import pandas as pd import numpy as np import xgboost as xgb from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder, StandardScaler from sklearn.metrics import accuracy_score, classification_report import joblib import json # 1. 加载数据 print("正在加载数据...") df = pd.read_csv('bank.csv') # 2. 数据预处理 print("正在进行数据预处理...") # 移除 duration 列 (避免数据泄露) if 'duration' in df.columns: df = df.drop('duration', axis=1) # 分离特征和目标 X = df.drop('deposit', axis=1) y = df['deposit'] # 处理目标变量 (yes -> 1, no -> 0) le_target = LabelEncoder() y = le_target.fit_transform(y) # 识别分类特征和数值特征 categorical_cols = X.select_dtypes(include=['object']).columns.tolist() numeric_cols = X.select_dtypes(include=['int64', 'float64']).columns.tolist() # 保存列名信息,供 Agent 使用 feature_meta = { 'numeric_cols': numeric_cols, 'categorical_cols': categorical_cols, 'all_cols': list(X.columns) } # 对分类特征进行 Label Encoding # 注意:XGBoost 可以处理类别特征,但通常需要转换为数值。 # 为了简化 Agent 的推理流程,我们需要保存这些 Encoder。 encoders = {} for col in categorical_cols: le = LabelEncoder() X[col] = le.fit_transform(X[col]) encoders[col] = le # 3. 划分数据集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 4. 训练模型 print("正在训练 XGBoost 模型...") model = xgb.XGBClassifier( n_estimators=100, learning_rate=0.1, max_depth=5, use_label_encoder=False, eval_metric='logloss' ) model.fit(X_train, y_train) # 5. 评估模型 y_pred = model.predict(X_test) y_pred_proba = model.predict_proba(X_test)[:, 1] print("\n模型评估结果:") print(f"Accuracy: {accuracy_score(y_test, y_pred):.4f}") print("\nClassification Report:") print(classification_report(y_test, y_pred)) # 6. 保存资产 print("\n正在保存模型和预处理工具...") artifacts = { 'model': model, 'encoders': encoders, 'target_encoder': le_target, 'feature_meta': feature_meta } joblib.dump(artifacts, 'model_artifacts.pkl') # 另外保存一份特征重要性,供参考 importances = model.feature_importances_ feature_names = X.columns feat_imp_df = pd.DataFrame({'Feature': feature_names, 'Importance': importances}) feat_imp_df = feat_imp_df.sort_values(by='Importance', ascending=False) print("\n特征重要性 Top 5:") print(feat_imp_df.head()) print("\n完成!模型已保存为 'model_artifacts.pkl'")