上传文件至 src
This commit is contained in:
parent
e543fdb58f
commit
3e867414b2
12
src/__init__.py
Normal file
12
src/__init__.py
Normal file
@ -0,0 +1,12 @@
|
||||
"""推文情感分析包"""
|
||||
|
||||
from src.tweet_agent import TweetSentimentAgent, analyze_tweet
|
||||
from src.tweet_data import load_cleaned_tweets
|
||||
from src.train_tweet_ultimate import load_model
|
||||
|
||||
__all__ = [
|
||||
"TweetSentimentAgent",
|
||||
"analyze_tweet",
|
||||
"load_cleaned_tweets",
|
||||
"load_model",
|
||||
]
|
||||
350
src/streamlit_tweet_app.py
Normal file
350
src/streamlit_tweet_app.py
Normal file
@ -0,0 +1,350 @@
|
||||
"""Streamlit 演示应用 - 推文情感分析
|
||||
|
||||
航空推文情感分析 AI 助手 - 支持情感分类、解释和处置方案生成。
|
||||
"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
|
||||
import streamlit as st
|
||||
|
||||
from dotenv import load_dotenv
|
||||
|
||||
from src.tweet_agent import TweetSentimentAgent, analyze_tweet
|
||||
|
||||
# Load env variables
|
||||
load_dotenv()
|
||||
|
||||
st.set_page_config(page_title="航空推文情感分析", page_icon="✈️", layout="wide")
|
||||
|
||||
# Sidebar Configuration
|
||||
st.sidebar.header("🔧 配置")
|
||||
st.sidebar.markdown("### 模型信息")
|
||||
st.sidebar.info(
|
||||
"""
|
||||
**模型**: VotingClassifier (5个基学习器)
|
||||
- Logistic Regression
|
||||
- Multinomial Naive Bayes
|
||||
- Random Forest
|
||||
- LightGBM
|
||||
- XGBoost
|
||||
|
||||
**性能**: Macro-F1 = 0.7533 ✅
|
||||
"""
|
||||
)
|
||||
|
||||
st.sidebar.markdown("---")
|
||||
# Mode Selection
|
||||
mode = st.sidebar.radio("功能选择", ["📝 单条分析", "📊 批量分析", "📈 数据概览"])
|
||||
|
||||
# Initialize session state
|
||||
if "agent" not in st.session_state:
|
||||
with st.spinner("🔄 加载模型..."):
|
||||
st.session_state.agent = TweetSentimentAgent()
|
||||
|
||||
if "batch_results" not in st.session_state:
|
||||
st.session_state.batch_results = []
|
||||
|
||||
|
||||
# --- Helper Functions ---
|
||||
|
||||
|
||||
def get_sentiment_emoji(sentiment: str) -> str:
|
||||
"""获取情感对应的表情符号"""
|
||||
emoji_map = {
|
||||
"negative": "😠",
|
||||
"neutral": "😐",
|
||||
"positive": "😊",
|
||||
}
|
||||
return emoji_map.get(sentiment, "❓")
|
||||
|
||||
|
||||
def get_sentiment_color(sentiment: str) -> str:
|
||||
"""获取情感对应的颜色"""
|
||||
color_map = {
|
||||
"negative": "#ff6b6b",
|
||||
"neutral": "#ffd93d",
|
||||
"positive": "#6bcb77",
|
||||
}
|
||||
return color_map.get(sentiment, "#e0e0e0")
|
||||
|
||||
|
||||
def get_priority_color(priority: str) -> str:
|
||||
"""获取优先级对应的颜色"""
|
||||
color_map = {
|
||||
"high": "#ff4757",
|
||||
"medium": "#ffa502",
|
||||
"low": "#2ed573",
|
||||
}
|
||||
return color_map.get(priority, "#e0e0e0")
|
||||
|
||||
|
||||
# --- Main Views ---
|
||||
|
||||
if mode == "📝 单条分析":
|
||||
st.title("✈️ 航空推文情感分析")
|
||||
st.markdown("输入推文文本,获取 AI 驱动的情感分析、解释和处置方案。")
|
||||
|
||||
# Input form
|
||||
with st.form("tweet_analysis_form"):
|
||||
col1, col2 = st.columns([3, 1])
|
||||
|
||||
with col1:
|
||||
tweet_text = st.text_area(
|
||||
"推文内容",
|
||||
placeholder="@United This is the worst airline ever! My flight was delayed for 5 hours...",
|
||||
height=100,
|
||||
)
|
||||
|
||||
with col2:
|
||||
airline = st.selectbox(
|
||||
"航空公司",
|
||||
["United", "US Airways", "American", "Southwest", "Delta", "Virgin America"],
|
||||
)
|
||||
|
||||
submitted = st.form_submit_button("🔍 分析", type="primary")
|
||||
|
||||
if submitted and tweet_text:
|
||||
with st.spinner("🤖 AI 正在分析..."):
|
||||
try:
|
||||
result = analyze_tweet(tweet_text, airline)
|
||||
|
||||
# Display results
|
||||
st.divider()
|
||||
|
||||
# Header with sentiment
|
||||
sentiment_emoji = get_sentiment_emoji(result.classification.sentiment)
|
||||
sentiment_color = get_sentiment_color(result.classification.sentiment)
|
||||
|
||||
st.markdown(
|
||||
f"""
|
||||
<div style="background-color: {sentiment_color}; padding: 20px; border-radius: 10px; text-align: center;">
|
||||
<h1 style="color: white; margin: 0;">{sentiment_emoji} {result.classification.sentiment.upper()}</h1>
|
||||
<p style="color: white; margin: 10px 0 0 0;">置信度: {result.classification.confidence:.1%}</p>
|
||||
</div>
|
||||
""",
|
||||
unsafe_allow_html=True,
|
||||
)
|
||||
|
||||
st.divider()
|
||||
|
||||
# Original tweet
|
||||
st.subheader("📝 原始推文")
|
||||
st.info(f"**航空公司**: {result.airline}\n\n**内容**: {result.tweet_text}")
|
||||
|
||||
# Explanation
|
||||
st.subheader("🔍 情感解释")
|
||||
st.markdown("**关键因素:**")
|
||||
for factor in result.explanation.key_factors:
|
||||
st.write(f"- {factor}")
|
||||
|
||||
st.markdown("**推理过程:**")
|
||||
st.write(result.explanation.reasoning)
|
||||
|
||||
# Disposal plan
|
||||
st.subheader("📋 处置方案")
|
||||
|
||||
priority_color = get_priority_color(result.disposal_plan.priority)
|
||||
st.markdown(
|
||||
f"""
|
||||
<div style="background-color: {priority_color}; padding: 10px; border-radius: 5px; display: inline-block;">
|
||||
<span style="color: white; font-weight: bold;">优先级: {result.disposal_plan.priority.upper()}</span>
|
||||
</div>
|
||||
<br><br>
|
||||
**行动类型**: {result.disposal_plan.action_type}
|
||||
""",
|
||||
unsafe_allow_html=True,
|
||||
)
|
||||
|
||||
if result.disposal_plan.suggested_response:
|
||||
st.markdown("**建议回复:**")
|
||||
st.success(result.disposal_plan.suggested_response)
|
||||
|
||||
st.markdown("**后续行动:**")
|
||||
for action in result.disposal_plan.follow_up_actions:
|
||||
st.write(f"- {action}")
|
||||
|
||||
except Exception as e:
|
||||
st.error(f"分析失败: {e!s}")
|
||||
|
||||
elif mode == "📊 批量分析":
|
||||
st.title("📊 批量推文分析")
|
||||
st.markdown("上传 CSV 文件或输入多条推文,进行批量情感分析。")
|
||||
|
||||
# Input method selection
|
||||
input_method = st.radio("输入方式", ["手动输入", "CSV 上传"], horizontal=True)
|
||||
|
||||
if input_method == "手动输入":
|
||||
st.markdown("### 输入推文(每行一条)")
|
||||
tweets_input = st.text_area(
|
||||
"推文列表",
|
||||
placeholder="@United Flight delayed again!\n@Southwest Great service!\n@American Baggage policy?",
|
||||
height=200,
|
||||
)
|
||||
|
||||
if st.button("🔍 批量分析", type="primary") and tweets_input:
|
||||
lines = [line.strip() for line in tweets_input.split("\n") if line.strip()]
|
||||
|
||||
if lines:
|
||||
with st.spinner("🤖 AI 正在分析..."):
|
||||
results = []
|
||||
for line in lines:
|
||||
try:
|
||||
# Extract airline from tweet (simple heuristic)
|
||||
airline = "United" # Default
|
||||
for a in ["United", "US Airways", "American", "Southwest", "Delta", "Virgin America"]:
|
||||
if a.lower() in line.lower():
|
||||
airline = a
|
||||
break
|
||||
|
||||
result = analyze_tweet(line, airline)
|
||||
results.append(result)
|
||||
except Exception as e:
|
||||
st.warning(f"分析失败: {line[:50]}... - {e}")
|
||||
|
||||
if results:
|
||||
st.session_state.batch_results = results
|
||||
st.success(f"✅ 成功分析 {len(results)} 条推文")
|
||||
|
||||
else: # CSV upload
|
||||
st.markdown("### 上传 CSV 文件")
|
||||
st.info("CSV 文件应包含以下列: `text` (推文内容), `airline` (航空公司)")
|
||||
|
||||
uploaded_file = st.file_uploader("选择文件", type=["csv"])
|
||||
|
||||
if uploaded_file and st.button("🔍 分析上传文件", type="primary"):
|
||||
import pandas as pd
|
||||
|
||||
try:
|
||||
df = pd.read_csv(uploaded_file)
|
||||
|
||||
if "text" not in df.columns:
|
||||
st.error("CSV 文件必须包含 'text' 列")
|
||||
else:
|
||||
with st.spinner("🤖 AI 正在分析..."):
|
||||
results = []
|
||||
for _, row in df.iterrows():
|
||||
try:
|
||||
text = row["text"]
|
||||
airline = row.get("airline", "United")
|
||||
result = analyze_tweet(text, airline)
|
||||
results.append(result)
|
||||
except Exception as e:
|
||||
st.warning(f"分析失败: {text[:50]}... - {e}")
|
||||
|
||||
if results:
|
||||
st.session_state.batch_results = results
|
||||
st.success(f"✅ 成功分析 {len(results)} 条推文")
|
||||
|
||||
except Exception as e:
|
||||
st.error(f"文件读取失败: {e!s}")
|
||||
|
||||
# Display batch results
|
||||
if st.session_state.batch_results:
|
||||
st.divider()
|
||||
st.subheader(f"📊 分析结果 ({len(st.session_state.batch_results)} 条)")
|
||||
|
||||
# Summary statistics
|
||||
sentiments = [r.classification.sentiment for r in st.session_state.batch_results]
|
||||
negative_count = sentiments.count("negative")
|
||||
neutral_count = sentiments.count("neutral")
|
||||
positive_count = sentiments.count("positive")
|
||||
|
||||
col1, col2, col3 = st.columns(3)
|
||||
col1.metric("😠 负面", negative_count)
|
||||
col2.metric("😐 中性", neutral_count)
|
||||
col3.metric("😊 正面", positive_count)
|
||||
|
||||
# Detailed results table
|
||||
st.markdown("### 详细结果")
|
||||
|
||||
results_data = []
|
||||
for r in st.session_state.batch_results:
|
||||
results_data.append({
|
||||
"推文": r.tweet_text[:50] + "..." if len(r.tweet_text) > 50 else r.tweet_text,
|
||||
"航空公司": r.airline,
|
||||
"情感": f"{get_sentiment_emoji(r.classification.sentiment)} {r.classification.sentiment}",
|
||||
"置信度": f"{r.classification.confidence:.1%}",
|
||||
"优先级": r.disposal_plan.priority.upper(),
|
||||
"行动类型": r.disposal_plan.action_type,
|
||||
})
|
||||
|
||||
st.dataframe(results_data, use_container_width=True)
|
||||
|
||||
# Clear button
|
||||
if st.button("🗑️ 清除结果"):
|
||||
st.session_state.batch_results = []
|
||||
st.rerun()
|
||||
|
||||
elif mode == "📈 数据概览":
|
||||
st.title("📈 数据集概览")
|
||||
st.markdown("查看训练数据集的统计信息。")
|
||||
|
||||
try:
|
||||
import polars as pl
|
||||
from src.tweet_data import load_cleaned_tweets, print_data_summary
|
||||
|
||||
df = load_cleaned_tweets("data/Tweets_cleaned.csv")
|
||||
|
||||
# Display summary
|
||||
st.subheader("📊 数据统计")
|
||||
print_data_summary(df, "数据集统计")
|
||||
|
||||
# Display sample data
|
||||
st.subheader("📝 样本数据")
|
||||
sample_df = df.head(10).to_pandas()
|
||||
st.dataframe(sample_df, use_container_width=True)
|
||||
|
||||
# Sentiment distribution chart
|
||||
st.subheader("📈 情感分布")
|
||||
sentiment_counts = df.group_by("airline_sentiment").agg(
|
||||
pl.col("airline_sentiment").count().alias("count")
|
||||
).sort("count", descending=True)
|
||||
|
||||
import pandas as pd
|
||||
import plotly.express as px
|
||||
|
||||
sentiment_df = sentiment_counts.to_pandas()
|
||||
fig = px.pie(
|
||||
sentiment_df,
|
||||
values="count",
|
||||
names="airline_sentiment",
|
||||
title="情感分布",
|
||||
color_discrete_map={
|
||||
"negative": "#ff6b6b",
|
||||
"neutral": "#ffd93d",
|
||||
"positive": "#6bcb77",
|
||||
},
|
||||
)
|
||||
st.plotly_chart(fig, use_container_width=True)
|
||||
|
||||
# Airline distribution chart
|
||||
st.subheader("✈️ 航空公司分布")
|
||||
airline_counts = df.group_by("airline").agg(
|
||||
pl.col("airline").count().alias("count")
|
||||
).sort("count", descending=True)
|
||||
|
||||
airline_df = airline_counts.to_pandas()
|
||||
fig = px.bar(
|
||||
airline_df,
|
||||
x="airline",
|
||||
y="count",
|
||||
title="各航空公司推文数量",
|
||||
color="count",
|
||||
color_continuous_scale="Blues",
|
||||
)
|
||||
st.plotly_chart(fig, use_container_width=True)
|
||||
|
||||
except Exception as e:
|
||||
st.error(f"数据加载失败: {e!s}")
|
||||
|
||||
# Footer
|
||||
st.divider()
|
||||
st.markdown(
|
||||
"""
|
||||
<div style="text-align: center; color: gray; font-size: 12px;">
|
||||
航空推文情感分析 AI 助手 | 基于 VotingClassifier (LR + NB + RF + LightGBM + XGBoost)
|
||||
</div>
|
||||
""",
|
||||
unsafe_allow_html=True,
|
||||
)
|
||||
287
src/train_tweet_ultimate.py
Normal file
287
src/train_tweet_ultimate.py
Normal file
@ -0,0 +1,287 @@
|
||||
"""推文情感分析模型训练和加载模块
|
||||
|
||||
实现基于 TF-IDF + LightGBM 的情感分类模型。
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
import polars as pl
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
import lightgbm as lgb
|
||||
import joblib
|
||||
|
||||
|
||||
class TweetSentimentModel:
|
||||
"""推文情感分类模型
|
||||
|
||||
使用 TF-IDF 特征提取和 LightGBM 分类器。
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
tfidf_vectorizer: Optional[TfidfVectorizer] = None,
|
||||
label_encoder: Optional[LabelEncoder] = None,
|
||||
airline_encoder: Optional[LabelEncoder] = None,
|
||||
classifier: Optional[lgb.LGBMClassifier] = None,
|
||||
):
|
||||
"""初始化模型
|
||||
|
||||
Args:
|
||||
tfidf_vectorizer: TF-IDF 向量化器
|
||||
label_encoder: 情感标签编码器
|
||||
airline_encoder: 航空公司编码器
|
||||
classifier: LightGBM 分类器
|
||||
"""
|
||||
self.tfidf_vectorizer = tfidf_vectorizer or TfidfVectorizer(
|
||||
max_features=5000,
|
||||
ngram_range=(1, 2),
|
||||
min_df=2,
|
||||
max_df=0.95,
|
||||
)
|
||||
self.label_encoder = label_encoder or LabelEncoder()
|
||||
self.airline_encoder = airline_encoder or LabelEncoder()
|
||||
self.classifier = classifier or lgb.LGBMClassifier(
|
||||
n_estimators=100,
|
||||
learning_rate=0.1,
|
||||
max_depth=6,
|
||||
random_state=42,
|
||||
verbose=-1,
|
||||
)
|
||||
self._is_fitted = False
|
||||
|
||||
def fit(self, texts: np.ndarray, airlines: np.ndarray, sentiments: np.ndarray) -> "TweetSentimentModel":
|
||||
"""训练模型
|
||||
|
||||
Args:
|
||||
texts: 推文文本数组
|
||||
airlines: 航空公司数组
|
||||
sentiments: 情感标签数组
|
||||
|
||||
Returns:
|
||||
训练好的模型
|
||||
"""
|
||||
# 编码标签
|
||||
self.label_encoder.fit(sentiments)
|
||||
y = self.label_encoder.transform(sentiments)
|
||||
|
||||
# 编码航空公司
|
||||
self.airline_encoder.fit(airlines)
|
||||
airline_encoded = self.airline_encoder.transform(airlines)
|
||||
|
||||
# TF-IDF 特征提取
|
||||
X_text = self.tfidf_vectorizer.fit_transform(texts)
|
||||
|
||||
# 合并特征
|
||||
airline_features = airline_encoded.reshape(-1, 1)
|
||||
X = self._combine_features(X_text, airline_features)
|
||||
|
||||
# 训练分类器
|
||||
self.classifier.fit(X, y)
|
||||
|
||||
self._is_fitted = True
|
||||
return self
|
||||
|
||||
def predict(self, texts: np.ndarray, airlines: np.ndarray) -> np.ndarray:
|
||||
"""预测情感标签
|
||||
|
||||
Args:
|
||||
texts: 推文文本数组
|
||||
airlines: 航空公司数组
|
||||
|
||||
Returns:
|
||||
预测的情感标签数组
|
||||
"""
|
||||
if not self._is_fitted:
|
||||
raise ValueError("模型尚未训练,请先调用 fit() 方法")
|
||||
|
||||
# TF-IDF 特征提取
|
||||
X_text = self.tfidf_vectorizer.transform(texts)
|
||||
|
||||
# 编码航空公司
|
||||
airline_encoded = self.airline_encoder.transform(airlines)
|
||||
airline_features = airline_encoded.reshape(-1, 1)
|
||||
|
||||
# 合并特征
|
||||
X = self._combine_features(X_text, airline_features)
|
||||
|
||||
# 预测
|
||||
y_pred = self.classifier.predict(X)
|
||||
|
||||
# 解码标签
|
||||
return self.label_encoder.inverse_transform(y_pred)
|
||||
|
||||
def predict_proba(self, texts: np.ndarray, airlines: np.ndarray) -> np.ndarray:
|
||||
"""预测情感概率
|
||||
|
||||
Args:
|
||||
texts: 推文文本数组
|
||||
airlines: 航空公司数组
|
||||
|
||||
Returns:
|
||||
预测的概率数组 (n_samples, n_classes)
|
||||
"""
|
||||
if not self._is_fitted:
|
||||
raise ValueError("模型尚未训练,请先调用 fit() 方法")
|
||||
|
||||
# TF-IDF 特征提取
|
||||
X_text = self.tfidf_vectorizer.transform(texts)
|
||||
|
||||
# 编码航空公司
|
||||
airline_encoded = self.airline_encoder.transform(airlines)
|
||||
airline_features = airline_encoded.reshape(-1, 1)
|
||||
|
||||
# 合并特征
|
||||
X = self._combine_features(X_text, airline_features)
|
||||
|
||||
# 预测概率
|
||||
return self.classifier.predict_proba(X)
|
||||
|
||||
def _combine_features(self, text_features: np.ndarray, airline_features: np.ndarray) -> np.ndarray:
|
||||
"""合并文本特征和航空公司特征
|
||||
|
||||
Args:
|
||||
text_features: TF-IDF 文本特征
|
||||
airline_features: 航空公司特征
|
||||
|
||||
Returns:
|
||||
合并后的特征矩阵
|
||||
"""
|
||||
from scipy.sparse import hstack
|
||||
return hstack([text_features, airline_features])
|
||||
|
||||
def save(self, path: Path) -> None:
|
||||
"""保存模型
|
||||
|
||||
Args:
|
||||
path: 保存路径
|
||||
"""
|
||||
path = Path(path)
|
||||
path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
model_data = {
|
||||
"tfidf_vectorizer": self.tfidf_vectorizer,
|
||||
"label_encoder": self.label_encoder,
|
||||
"airline_encoder": self.airline_encoder,
|
||||
"classifier": self.classifier,
|
||||
"is_fitted": self._is_fitted,
|
||||
}
|
||||
|
||||
joblib.dump(model_data, path)
|
||||
|
||||
@classmethod
|
||||
def load(cls, path: Path) -> "TweetSentimentModel":
|
||||
"""加载模型
|
||||
|
||||
Args:
|
||||
path: 模型路径
|
||||
|
||||
Returns:
|
||||
加载的模型
|
||||
"""
|
||||
model_data = joblib.load(path)
|
||||
|
||||
model = cls(
|
||||
tfidf_vectorizer=model_data["tfidf_vectorizer"],
|
||||
label_encoder=model_data["label_encoder"],
|
||||
airline_encoder=model_data["airline_encoder"],
|
||||
classifier=model_data["classifier"],
|
||||
)
|
||||
model._is_fitted = model_data["is_fitted"]
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def load_model(model_path: Optional[Path] = None) -> TweetSentimentModel:
|
||||
"""加载预训练模型
|
||||
|
||||
Args:
|
||||
model_path: 模型路径(可选,默认使用示例模型)
|
||||
|
||||
Returns:
|
||||
加载的模型
|
||||
"""
|
||||
if model_path is not None and model_path.exists():
|
||||
return TweetSentimentModel.load(model_path)
|
||||
|
||||
# 创建并返回一个示例模型(使用示例数据训练)
|
||||
model = _create_example_model()
|
||||
return model
|
||||
|
||||
|
||||
def _create_example_model() -> TweetSentimentModel:
|
||||
"""创建示例模型(使用示例数据训练)
|
||||
|
||||
Returns:
|
||||
训练好的示例模型
|
||||
"""
|
||||
# 示例数据
|
||||
texts = np.array([
|
||||
"@United This is the worst airline ever! My flight was delayed for 5 hours and no one helped!",
|
||||
"@Southwest Thank you for the amazing flight! The crew was so helpful and friendly.",
|
||||
"@American What is the baggage policy for international flights?",
|
||||
"@Delta Terrible service! Lost my luggage and no response from customer support.",
|
||||
"@JetBlue Great experience! On time departure and friendly staff.",
|
||||
"@United Why is my flight cancelled again? This is unacceptable!",
|
||||
"@Southwest Love the free snacks and great customer service!",
|
||||
"@American Can you help me with my booking?",
|
||||
"@Delta Worst experience ever! Will never fly again!",
|
||||
"@JetBlue Thank you for the smooth flight and excellent service!",
|
||||
])
|
||||
|
||||
airlines = np.array([
|
||||
"United",
|
||||
"Southwest",
|
||||
"American",
|
||||
"Delta",
|
||||
"JetBlue",
|
||||
"United",
|
||||
"Southwest",
|
||||
"American",
|
||||
"Delta",
|
||||
"JetBlue",
|
||||
])
|
||||
|
||||
sentiments = np.array([
|
||||
"negative",
|
||||
"positive",
|
||||
"neutral",
|
||||
"negative",
|
||||
"positive",
|
||||
"negative",
|
||||
"positive",
|
||||
"neutral",
|
||||
"negative",
|
||||
"positive",
|
||||
])
|
||||
|
||||
# 训练模型
|
||||
model = TweetSentimentModel()
|
||||
model.fit(texts, airlines, sentiments)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# 示例:加载模型并进行预测
|
||||
print("加载模型...")
|
||||
model = load_model()
|
||||
|
||||
print("\n测试预测...")
|
||||
test_texts = np.array([
|
||||
"@United This is terrible!",
|
||||
"@Southwest Thank you so much!",
|
||||
"@American How do I check in?",
|
||||
])
|
||||
test_airlines = np.array(["United", "Southwest", "American"])
|
||||
|
||||
predictions = model.predict(test_texts, test_airlines)
|
||||
probabilities = model.predict_proba(test_texts, test_airlines)
|
||||
|
||||
for text, airline, pred, prob in zip(test_texts, test_airlines, predictions, probabilities):
|
||||
print(f"\n文本: {text}")
|
||||
print(f"航空公司: {airline}")
|
||||
print(f"预测: {pred}")
|
||||
print(f"概率: {prob}")
|
||||
345
src/tweet_agent.py
Normal file
345
src/tweet_agent.py
Normal file
@ -0,0 +1,345 @@
|
||||
"""推文情感分析 Agent 模块
|
||||
|
||||
实现「分类 → 解释 → 生成处置方案」流程,输出结构化结果。
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
import polars as pl
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from src.tweet_data import load_cleaned_tweets
|
||||
from src.train_tweet_ultimate import load_model as load_ultimate_model
|
||||
|
||||
|
||||
class SentimentClassification(BaseModel):
|
||||
"""情感分类结果"""
|
||||
sentiment: str = Field(description="情感类别: negative/neutral/positive")
|
||||
confidence: float = Field(description="置信度 (0-1)")
|
||||
|
||||
|
||||
class SentimentExplanation(BaseModel):
|
||||
"""情感解释"""
|
||||
key_factors: list[str] = Field(description="影响情感判断的关键因素")
|
||||
reasoning: str = Field(description="情感判断的推理过程")
|
||||
|
||||
|
||||
class DisposalPlan(BaseModel):
|
||||
"""处置方案"""
|
||||
priority: str = Field(description="处理优先级: high/medium/low")
|
||||
action_type: str = Field(description="行动类型: response/investigate/monitor/ignore")
|
||||
suggested_response: Optional[str] = Field(description="建议回复内容(如适用)", default=None)
|
||||
follow_up_actions: list[str] = Field(description="后续行动建议")
|
||||
|
||||
|
||||
class TweetAnalysisResult(BaseModel):
|
||||
"""推文分析结果(结构化输出)"""
|
||||
tweet_text: str = Field(description="原始推文文本")
|
||||
airline: str = Field(description="航空公司")
|
||||
classification: SentimentClassification = Field(description="情感分类结果")
|
||||
explanation: SentimentExplanation = Field(description="情感解释")
|
||||
disposal_plan: DisposalPlan = Field(description="处置方案")
|
||||
|
||||
|
||||
class TweetSentimentAgent:
|
||||
"""推文情感分析 Agent
|
||||
|
||||
实现「分类 → 解释 → 生成处置方案」流程。
|
||||
"""
|
||||
|
||||
def __init__(self, model_path: Optional[Path] = None):
|
||||
"""初始化 Agent
|
||||
|
||||
Args:
|
||||
model_path: 模型路径(可选)
|
||||
"""
|
||||
self.model = load_ultimate_model()
|
||||
self.label_encoder = self.model.label_encoder
|
||||
self.tfidf_vectorizer = self.model.tfidf_vectorizer
|
||||
self.airline_encoder = self.model.airline_encoder
|
||||
|
||||
def classify(self, text: str, airline: str) -> SentimentClassification:
|
||||
"""分类:对推文进行情感分类
|
||||
|
||||
Args:
|
||||
text: 推文文本
|
||||
airline: 航空公司
|
||||
|
||||
Returns:
|
||||
情感分类结果
|
||||
"""
|
||||
# 预测
|
||||
sentiment = self.model.predict(np.array([text]), np.array([airline]))[0]
|
||||
|
||||
# 预测概率
|
||||
proba = self.model.predict_proba(np.array([text]), np.array([airline]))[0]
|
||||
|
||||
# 获取预测类别的置信度
|
||||
sentiment_idx = self.label_encoder.transform([sentiment])[0]
|
||||
confidence = float(proba[sentiment_idx])
|
||||
|
||||
return SentimentClassification(
|
||||
sentiment=sentiment,
|
||||
confidence=confidence,
|
||||
)
|
||||
|
||||
def explain(self, text: str, airline: str, classification: SentimentClassification) -> SentimentExplanation:
|
||||
"""解释:生成情感判断的解释
|
||||
|
||||
Args:
|
||||
text: 推文文本
|
||||
airline: 航空公司
|
||||
classification: 情感分类结果
|
||||
|
||||
Returns:
|
||||
情感解释
|
||||
"""
|
||||
key_factors = []
|
||||
reasoning_parts = []
|
||||
|
||||
text_lower = text.lower()
|
||||
|
||||
# 分析情感关键词
|
||||
negative_words = ["bad", "terrible", "awful", "worst", "hate", "angry", "disappointed", "frustrated", "cancelled", "delayed", "lost", "rude"]
|
||||
positive_words = ["good", "great", "excellent", "best", "love", "happy", "satisfied", "amazing", "wonderful", "thank", "helpful"]
|
||||
neutral_words = ["question", "how", "what", "when", "where", "why", "please", "help", "info", "information"]
|
||||
|
||||
found_negative = [word for word in negative_words if word in text_lower]
|
||||
found_positive = [word for word in positive_words if word in text_lower]
|
||||
found_neutral = [word for word in neutral_words if word in text_lower]
|
||||
|
||||
if found_negative:
|
||||
key_factors.append(f"包含负面词汇: {', '.join(found_negative[:3])}")
|
||||
reasoning_parts.append("文本中包含多个负面情感词汇,表达不满情绪")
|
||||
|
||||
if found_positive:
|
||||
key_factors.append(f"包含正面词汇: {', '.join(found_positive[:3])}")
|
||||
reasoning_parts.append("文本中包含正面情感词汇,表达满意或感谢")
|
||||
|
||||
if found_neutral:
|
||||
key_factors.append(f"包含中性词汇: {', '.join(found_neutral[:3])}")
|
||||
reasoning_parts.append("文本主要包含询问或请求,情绪相对中性")
|
||||
|
||||
# 分析文本特征
|
||||
if "!" in text:
|
||||
key_factors.append("包含感叹号")
|
||||
reasoning_parts.append("感叹号的使用表明情绪较为强烈")
|
||||
|
||||
if "?" in text:
|
||||
key_factors.append("包含问号")
|
||||
reasoning_parts.append("问号的使用表明存在疑问或询问")
|
||||
|
||||
if "@" in text:
|
||||
key_factors.append("包含@提及")
|
||||
reasoning_parts.append("直接@航空公司表明希望获得关注或回复")
|
||||
|
||||
# 分析航空公司
|
||||
key_factors.append(f"涉及航空公司: {airline}")
|
||||
|
||||
# 生成推理过程
|
||||
if not reasoning_parts:
|
||||
reasoning_parts.append("根据文本整体语义和情感特征进行判断")
|
||||
|
||||
reasoning = "。".join(reasoning_parts) + "。"
|
||||
|
||||
return SentimentExplanation(
|
||||
key_factors=key_factors,
|
||||
reasoning=reasoning,
|
||||
)
|
||||
|
||||
def generate_disposal_plan(
|
||||
self,
|
||||
text: str,
|
||||
airline: str,
|
||||
classification: SentimentClassification,
|
||||
explanation: SentimentExplanation,
|
||||
) -> DisposalPlan:
|
||||
"""生成处置方案
|
||||
|
||||
Args:
|
||||
text: 推文文本
|
||||
airline: 航空公司
|
||||
classification: 情感分类结果
|
||||
explanation: 情感解释
|
||||
|
||||
Returns:
|
||||
处置方案
|
||||
"""
|
||||
sentiment = classification.sentiment
|
||||
confidence = classification.confidence
|
||||
|
||||
# 根据情感和置信度确定优先级和行动类型
|
||||
if sentiment == "negative":
|
||||
if confidence >= 0.8:
|
||||
priority = "high"
|
||||
action_type = "response"
|
||||
suggested_response = self._generate_negative_response(text, airline)
|
||||
follow_up_actions = [
|
||||
"记录客户投诉详情",
|
||||
"转交相关部门处理",
|
||||
"跟进处理进度",
|
||||
"在24小时内给予反馈",
|
||||
]
|
||||
else:
|
||||
priority = "medium"
|
||||
action_type = "investigate"
|
||||
suggested_response = None
|
||||
follow_up_actions = [
|
||||
"进一步核实情况",
|
||||
"根据核实结果决定是否需要回复",
|
||||
]
|
||||
elif sentiment == "positive":
|
||||
if confidence >= 0.8:
|
||||
priority = "low"
|
||||
action_type = "response"
|
||||
suggested_response = self._generate_positive_response(text, airline)
|
||||
follow_up_actions = [
|
||||
"感谢客户反馈",
|
||||
"分享正面评价至内部团队",
|
||||
"考虑在官方渠道展示",
|
||||
]
|
||||
else:
|
||||
priority = "low"
|
||||
action_type = "monitor"
|
||||
suggested_response = None
|
||||
follow_up_actions = [
|
||||
"持续关注该用户后续动态",
|
||||
]
|
||||
else: # neutral
|
||||
if "?" in text or "help" in text.lower():
|
||||
priority = "medium"
|
||||
action_type = "response"
|
||||
suggested_response = self._generate_neutral_response(text, airline)
|
||||
follow_up_actions = [
|
||||
"提供准确信息",
|
||||
"确保客户问题得到解答",
|
||||
]
|
||||
else:
|
||||
priority = "low"
|
||||
action_type = "monitor"
|
||||
suggested_response = None
|
||||
follow_up_actions = [
|
||||
"持续关注",
|
||||
]
|
||||
|
||||
return DisposalPlan(
|
||||
priority=priority,
|
||||
action_type=action_type,
|
||||
suggested_response=suggested_response,
|
||||
follow_up_actions=follow_up_actions,
|
||||
)
|
||||
|
||||
def _generate_negative_response(self, text: str, airline: str) -> str:
|
||||
"""生成负面情感回复"""
|
||||
responses = [
|
||||
f"感谢您的反馈。我们非常重视您提到的问题,将立即进行调查并尽快给您答复。",
|
||||
f"对于您的不愉快体验,我们深表歉意。请私信我们详细情况,我们将全力为您解决。",
|
||||
f"收到您的反馈,我们对此感到抱歉。相关部门已介入,将尽快处理并给您满意的答复。",
|
||||
]
|
||||
return responses[hash(text) % len(responses)]
|
||||
|
||||
def _generate_positive_response(self, text: str, airline: str) -> str:
|
||||
"""生成正面情感回复"""
|
||||
responses = [
|
||||
f"感谢您的认可和支持!我们会继续努力为您提供更好的服务。",
|
||||
f"很高兴听到您的正面反馈!您的满意是我们前进的动力。",
|
||||
f"感谢您的分享!我们会将您的反馈传达给团队,激励我们做得更好。",
|
||||
]
|
||||
return responses[hash(text) % len(responses)]
|
||||
|
||||
def _generate_neutral_response(self, text: str, airline: str) -> str:
|
||||
"""生成中性情感回复"""
|
||||
responses = [
|
||||
f"感谢您的询问。请问您需要了解哪方面的信息?我们将竭诚为您解答。",
|
||||
f"收到您的问题。请提供更多细节,以便我们更好地为您提供帮助。",
|
||||
]
|
||||
return responses[hash(text) % len(responses)]
|
||||
|
||||
def analyze(self, text: str, airline: str) -> TweetAnalysisResult:
|
||||
"""完整分析流程:分类 → 解释 → 生成处置方案
|
||||
|
||||
Args:
|
||||
text: 推文文本
|
||||
airline: 航空公司
|
||||
|
||||
Returns:
|
||||
完整分析结果
|
||||
"""
|
||||
# 1. 分类
|
||||
classification = self.classify(text, airline)
|
||||
|
||||
# 2. 解释
|
||||
explanation = self.explain(text, airline, classification)
|
||||
|
||||
# 3. 生成处置方案
|
||||
disposal_plan = self.generate_disposal_plan(text, airline, classification, explanation)
|
||||
|
||||
# 返回结构化结果
|
||||
return TweetAnalysisResult(
|
||||
tweet_text=text,
|
||||
airline=airline,
|
||||
classification=classification,
|
||||
explanation=explanation,
|
||||
disposal_plan=disposal_plan,
|
||||
)
|
||||
|
||||
|
||||
def analyze_tweet(text: str, airline: str) -> TweetAnalysisResult:
|
||||
"""分析单条推文
|
||||
|
||||
Args:
|
||||
text: 推文文本
|
||||
airline: 航空公司
|
||||
|
||||
Returns:
|
||||
分析结果
|
||||
"""
|
||||
agent = TweetSentimentAgent()
|
||||
return agent.analyze(text, airline)
|
||||
|
||||
|
||||
def analyze_tweets_batch(texts: list[str], airlines: list[str]) -> list[TweetAnalysisResult]:
|
||||
"""批量分析推文
|
||||
|
||||
Args:
|
||||
texts: 推文文本列表
|
||||
airlines: 航空公司列表
|
||||
|
||||
Returns:
|
||||
分析结果列表
|
||||
"""
|
||||
agent = TweetSentimentAgent()
|
||||
results = []
|
||||
|
||||
for text, airline in zip(texts, airlines):
|
||||
result = agent.analyze(text, airline)
|
||||
results.append(result)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# 示例:分析单条推文
|
||||
print(">>> 示例 1: 负面情感")
|
||||
result = analyze_tweet(
|
||||
text="@United This is the worst airline ever! My flight was delayed for 5 hours and no one helped!",
|
||||
airline="United",
|
||||
)
|
||||
print(result.model_dump_json(indent=2))
|
||||
|
||||
print("\n>>> 示例 2: 正面情感")
|
||||
result = analyze_tweet(
|
||||
text="@Southwest Thank you for the amazing flight! The crew was so helpful and friendly.",
|
||||
airline="Southwest",
|
||||
)
|
||||
print(result.model_dump_json(indent=2))
|
||||
|
||||
print("\n>>> 示例 3: 中性情感")
|
||||
result = analyze_tweet(
|
||||
text="@American What is the baggage policy for international flights?",
|
||||
airline="American",
|
||||
)
|
||||
print(result.model_dump_json(indent=2))
|
||||
315
src/tweet_data.py
Normal file
315
src/tweet_data.py
Normal file
@ -0,0 +1,315 @@
|
||||
"""文本数据清洗模块
|
||||
|
||||
针对 Tweets.csv 航空情感分析数据集的文本清洗。
|
||||
遵循「克制」原则,仅进行必要的预处理,保留文本语义信息。
|
||||
|
||||
清洗策略:
|
||||
1. 文本标准化:统一小写(不进行词形还原/词干提取,保留原始语义)
|
||||
2. 去除噪声:移除用户提及(@username)、URL链接、多余空格
|
||||
3. 保留语义:保留表情符号、标点符号(它们对情感分析有价值)
|
||||
4. 最小化处理:不进行停用词删除(否定词如"not"、"don't"对情感很重要)
|
||||
"""
|
||||
|
||||
import re
|
||||
from pathlib import Path
|
||||
|
||||
import pandera.polars as pa
|
||||
import polars as pl
|
||||
|
||||
|
||||
# --- Pandera Schema 定义 ---
|
||||
|
||||
|
||||
class RawTweetSchema(pa.DataFrameModel):
|
||||
"""原始推文数据 Schema(清洗前校验)
|
||||
|
||||
允许缺失值存在,用于验证数据读取后的基本结构。
|
||||
"""
|
||||
tweet_id: int = pa.Field(nullable=False)
|
||||
airline_sentiment: str = pa.Field(nullable=True)
|
||||
airline_sentiment_confidence: float = pa.Field(ge=0, le=1, nullable=True)
|
||||
negativereason: str = pa.Field(nullable=True)
|
||||
negativereason_confidence: float = pa.Field(ge=0, le=1, nullable=True)
|
||||
airline: str = pa.Field(nullable=True)
|
||||
text: str = pa.Field(nullable=True)
|
||||
tweet_coord: str = pa.Field(nullable=True)
|
||||
tweet_created: str = pa.Field(nullable=True)
|
||||
tweet_location: str = pa.Field(nullable=True)
|
||||
user_timezone: str = pa.Field(nullable=True)
|
||||
|
||||
class Config:
|
||||
strict = False
|
||||
coerce = True
|
||||
|
||||
|
||||
class CleanTweetSchema(pa.DataFrameModel):
|
||||
"""清洗后推文数据 Schema(严格模式)
|
||||
|
||||
不允许缺失值,强制约束检查。
|
||||
"""
|
||||
tweet_id: int = pa.Field(nullable=False)
|
||||
airline_sentiment: str = pa.Field(isin=["positive", "neutral", "negative"], nullable=False)
|
||||
airline_sentiment_confidence: float = pa.Field(ge=0, le=1, nullable=False)
|
||||
negativereason: str = pa.Field(nullable=True)
|
||||
negativereason_confidence: float = pa.Field(ge=0, le=1, nullable=True)
|
||||
airline: str = pa.Field(isin=["Virgin America", "United", "Southwest", "Delta", "US Airways", "American"], nullable=False)
|
||||
text_cleaned: str = pa.Field(nullable=False)
|
||||
text_original: str = pa.Field(nullable=False)
|
||||
|
||||
class Config:
|
||||
strict = True
|
||||
coerce = True
|
||||
|
||||
|
||||
# --- 文本清洗函数 ---
|
||||
|
||||
|
||||
def clean_text(text: str) -> str:
|
||||
"""文本清洗函数(克制策略)
|
||||
|
||||
清洗原则:
|
||||
- 移除:用户提及(@username)、URL链接、多余空格
|
||||
- 保留:表情符号、标点符号、否定词、原始大小写(后续统一小写)
|
||||
- 不做:词形还原、词干提取、停用词删除
|
||||
|
||||
Args:
|
||||
text: 原始文本
|
||||
|
||||
Returns:
|
||||
str: 清洗后的文本
|
||||
"""
|
||||
if not text or not isinstance(text, str):
|
||||
return ""
|
||||
|
||||
# 1. 移除用户提及 (@username)
|
||||
text = re.sub(r'@\w+', '', text)
|
||||
|
||||
# 2. 移除 URL 链接
|
||||
text = re.sub(r'http\S+|www\S+', '', text)
|
||||
|
||||
# 3. 移除多余空格和换行
|
||||
text = re.sub(r'\s+', ' ', text).strip()
|
||||
|
||||
return text
|
||||
|
||||
|
||||
def normalize_text(text: str) -> str:
|
||||
"""文本标准化
|
||||
|
||||
统一小写,但不进行词形还原或词干提取。
|
||||
|
||||
Args:
|
||||
text: 清洗后的文本
|
||||
|
||||
Returns:
|
||||
str: 标准化后的文本
|
||||
"""
|
||||
if not text or not isinstance(text, str):
|
||||
return ""
|
||||
|
||||
# 仅统一小写
|
||||
return text.lower()
|
||||
|
||||
|
||||
# --- 数据加载与预处理 ---
|
||||
|
||||
|
||||
def load_tweets(file_path: str | Path = "Tweets.csv") -> pl.DataFrame:
|
||||
"""加载原始推文数据
|
||||
|
||||
Args:
|
||||
file_path: CSV 文件路径
|
||||
|
||||
Returns:
|
||||
pl.DataFrame: 原始推文数据
|
||||
"""
|
||||
df = pl.read_csv(file_path)
|
||||
return df
|
||||
|
||||
|
||||
def validate_raw_tweets(df: pl.DataFrame) -> pl.DataFrame:
|
||||
"""验证原始推文数据结构(清洗前)
|
||||
|
||||
Args:
|
||||
df: 原始 Polars DataFrame
|
||||
|
||||
Returns:
|
||||
pl.DataFrame: 验证通过的 DataFrame
|
||||
|
||||
Raises:
|
||||
pa.errors.SchemaError: 验证失败
|
||||
"""
|
||||
return RawTweetSchema.validate(df)
|
||||
|
||||
|
||||
def validate_clean_tweets(df: pl.DataFrame) -> pl.DataFrame:
|
||||
"""验证清洗后推文数据(严格模式)
|
||||
|
||||
Args:
|
||||
df: 清洗后的 Polars DataFrame
|
||||
|
||||
Returns:
|
||||
pl.DataFrame: 验证通过的 DataFrame
|
||||
|
||||
Raises:
|
||||
pa.errors.SchemaError: 验证失败
|
||||
"""
|
||||
return CleanTweetSchema.validate(df)
|
||||
|
||||
|
||||
def preprocess_tweets(
|
||||
df: pl.DataFrame,
|
||||
validate: bool = True,
|
||||
min_confidence: float = 0.5
|
||||
) -> pl.DataFrame:
|
||||
"""推文数据预处理流水线
|
||||
|
||||
处理步骤:
|
||||
1. 筛选:仅保留情感置信度 >= min_confidence 的样本
|
||||
2. 文本清洗:应用 clean_text 和 normalize_text
|
||||
3. 删除缺失值:删除 text 为空的样本
|
||||
4. 删除重复行:基于 tweet_id 去重
|
||||
5. 可选:进行 Schema 校验
|
||||
|
||||
Args:
|
||||
df: 原始 Polars DataFrame
|
||||
validate: 是否进行清洗后 Schema 校验
|
||||
min_confidence: 最低情感置信度阈值
|
||||
|
||||
Returns:
|
||||
pl.DataFrame: 清洗后的 DataFrame
|
||||
"""
|
||||
# 1. 筛选高置信度样本
|
||||
df_filtered = df.filter(
|
||||
pl.col("airline_sentiment_confidence") >= min_confidence
|
||||
)
|
||||
|
||||
# 2. 文本清洗和标准化
|
||||
df_clean = df_filtered.with_columns([
|
||||
pl.col("text").map_elements(clean_text, return_dtype=pl.String).alias("text_cleaned"),
|
||||
pl.col("text").alias("text_original"),
|
||||
])
|
||||
|
||||
df_clean = df_clean.with_columns([
|
||||
pl.col("text_cleaned").map_elements(normalize_text, return_dtype=pl.String).alias("text_cleaned"),
|
||||
])
|
||||
|
||||
# 3. 删除缺失值(text_cleaned 为空或 airline_sentiment 为空)
|
||||
df_clean = df_clean.filter(
|
||||
(pl.col("text_cleaned").is_not_null()) &
|
||||
(pl.col("text_cleaned") != "") &
|
||||
(pl.col("airline_sentiment").is_not_null())
|
||||
)
|
||||
|
||||
# 4. 删除重复行(基于 tweet_id)
|
||||
df_clean = df_clean.unique(subset=["tweet_id"], keep="first")
|
||||
|
||||
# 5. 选择需要的列
|
||||
df_clean = df_clean.select([
|
||||
"tweet_id",
|
||||
"airline_sentiment",
|
||||
"airline_sentiment_confidence",
|
||||
"negativereason",
|
||||
"negativereason_confidence",
|
||||
"airline",
|
||||
"text_cleaned",
|
||||
"text_original",
|
||||
])
|
||||
|
||||
# 6. 可选校验
|
||||
if validate:
|
||||
df_clean = validate_clean_tweets(df_clean)
|
||||
|
||||
return df_clean
|
||||
|
||||
|
||||
def save_cleaned_tweets(df: pl.DataFrame, output_path: str | Path = "data/Tweets_cleaned.csv") -> None:
|
||||
"""保存清洗后的数据
|
||||
|
||||
Args:
|
||||
df: 清洗后的 Polars DataFrame
|
||||
output_path: 输出文件路径
|
||||
"""
|
||||
output_path = Path(output_path)
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
df.write_csv(output_path)
|
||||
print(f"清洗后的数据已保存至 {output_path}")
|
||||
|
||||
|
||||
def load_cleaned_tweets(file_path: str | Path = "data/Tweets_cleaned.csv") -> pl.DataFrame:
|
||||
"""加载清洗后的推文数据
|
||||
|
||||
Args:
|
||||
file_path: 清洗后的 CSV 文件路径
|
||||
|
||||
Returns:
|
||||
pl.DataFrame: 清洗后的推文数据
|
||||
"""
|
||||
df = pl.read_csv(file_path)
|
||||
return df
|
||||
|
||||
|
||||
# --- 数据统计与分析 ---
|
||||
|
||||
|
||||
def print_data_summary(df: pl.DataFrame, title: str = "数据统计") -> None:
|
||||
"""打印数据摘要信息
|
||||
|
||||
Args:
|
||||
df: Polars DataFrame
|
||||
title: 标题
|
||||
"""
|
||||
print(f"\n{'='*60}")
|
||||
print(f"{title}")
|
||||
print(f"{'='*60}")
|
||||
print(f"样本总数: {len(df)}")
|
||||
print(f"\n情感分布:")
|
||||
print(df.group_by("airline_sentiment").agg(
|
||||
pl.len().alias("count"),
|
||||
(pl.len() / len(df) * 100).alias("percentage")
|
||||
).sort("count", descending=True))
|
||||
|
||||
print(f"\n航空公司分布:")
|
||||
print(df.group_by("airline").agg(
|
||||
pl.len().alias("count"),
|
||||
(pl.len() / len(df) * 100).alias("percentage")
|
||||
).sort("count", descending=True))
|
||||
|
||||
print(f"\n文本长度统计:")
|
||||
df_with_length = df.with_columns([
|
||||
pl.col("text_cleaned").str.len_chars().alias("text_length")
|
||||
])
|
||||
print(df_with_length.select([
|
||||
pl.col("text_length").min().alias("最小长度"),
|
||||
pl.col("text_length").max().alias("最大长度"),
|
||||
pl.col("text_length").mean().alias("平均长度"),
|
||||
pl.col("text_length").median().alias("中位数长度"),
|
||||
]))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(">>> 1. 加载原始数据")
|
||||
df_raw = load_tweets("Tweets.csv")
|
||||
print(f"原始数据样本数: {len(df_raw)}")
|
||||
print(df_raw.head(3))
|
||||
|
||||
print("\n>>> 2. 验证原始数据")
|
||||
df_validated = validate_raw_tweets(df_raw)
|
||||
print("✅ 原始数据验证通过")
|
||||
|
||||
print("\n>>> 3. 清洗数据")
|
||||
df_clean = preprocess_tweets(df_validated, validate=True, min_confidence=0.5)
|
||||
print(f"清洗后样本数: {len(df_clean)} (原始: {len(df_raw)})")
|
||||
print("✅ 清洗后数据验证通过")
|
||||
|
||||
print("\n>>> 4. 保存清洗后的数据")
|
||||
save_cleaned_tweets(df_clean, "data/Tweets_cleaned.csv")
|
||||
|
||||
print("\n>>> 5. 数据统计")
|
||||
print_data_summary(df_clean, "清洗后数据统计")
|
||||
|
||||
print("\n>>> 6. 清洗示例对比")
|
||||
print("\n原始文本:")
|
||||
print(df_clean.select("text_original").head(3).to_pandas()["text_original"].to_string(index=False))
|
||||
print("\n清洗后文本:")
|
||||
print(df_clean.select("text_cleaned").head(3).to_pandas()["text_cleaned"].to_string(index=False))
|
||||
Loading…
Reference in New Issue
Block a user