LPC/app.py

370 lines
13 KiB
Python
Raw Normal View History

import logging
import sys
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('app_debug.log'),
logging.StreamHandler(sys.stdout)
]
)
logger = logging.getLogger(__name__)
from flask import Flask, render_template, request, jsonify, session
from services.deepseek_service import deepseek_service
from config import Config
import uuid
import datetime
app = Flask(__name__)
app.secret_key = "interviewer-secret-key-change-in-production"
# 设置session过期时间为1小时
app.permanent_session_lifetime = datetime.timedelta(hours=1)
# 内存数据库存储面试数据避免session过期导致的"面试不存在"错误
interviews_db = {}
INTERVIEW_PHASES = {
"intro": "自我介绍",
"professional": "专业能力",
"scenario": "情景假设",
"career": "职业规划",
"closing": "面试结束"
}
QUESTION_COUNTS = {
"intro": 2,
"professional": 4,
"scenario": 2,
"career": 1
}
@app.route("/")
def index():
return render_template("index.html")
@app.route("/api/chat", methods=["POST"])
def chat():
data = request.json
user_input = data.get("message", "").strip()
system_type = data.get("system_type", "general_assistant")
conversation_key = data.get("conversation_key", "default")
if not user_input:
return jsonify({"error": "请输入内容"}), 400
if conversation_key not in session:
session[conversation_key] = []
conversation_history = session[conversation_key]
try:
result = deepseek_service.chat(
user_input=user_input,
conversation_history=conversation_history,
system_type=system_type
)
conversation_history.append({"role": "user", "content": user_input})
conversation_history.append(result)
session[conversation_key] = conversation_history[-20:]
return jsonify({"response": result["content"]})
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route("/api/resume/optimize", methods=["POST"])
def optimize_resume():
data = request.json
resume_content = data.get("resume_content", "").strip()
target_position = data.get("target_position", "").strip()
if not resume_content:
return jsonify({"error": "请提供简历内容"}), 400
try:
result = deepseek_service.optimize_resume(resume_content, target_position)
return jsonify(result)
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route("/api/interview/start", methods=["POST"])
def start_interview():
data = request.json
job_position = data.get("job_position", "").strip()
difficulty = data.get("difficulty", "intermediate")
if not job_position:
return jsonify({"error": "请选择目标岗位"}), 400
interview_id = str(uuid.uuid4())
interview_data = {
"job_position": job_position,
"difficulty": difficulty,
"current_phase": "intro",
"question_count": 0,
"conversation_history": [],
"is_active": True
}
session[f"interview_{interview_id}"] = interview_data
interviews_db[interview_id] = interview_data
first_question = deepseek_service.generate_interview_question(
job_position=job_position,
difficulty=difficulty,
phase="intro"
)
session[f"interview_{interview_id}"]["conversation_history"].append({
"role": "assistant",
"content": f"你好!我是面试官,现在开始针对{job_position}岗位的面试。\n\n{first_question}"
})
return jsonify({
"interview_id": interview_id,
"job_position": job_position,
"difficulty": difficulty,
"question": first_question,
"phase": "intro"
})
@app.route("/api/interview/answer", methods=["POST"])
def answer_question():
data = request.json
interview_id = data.get("interview_id", "").strip()
user_answer = data.get("answer", "").strip()
request_feedback = data.get("request_feedback", False)
if not interview_id:
return jsonify({"error": "无效的面试ID"}), 400
# 首先从内存数据库查找面试数据
if interview_id not in interviews_db:
# 如果内存数据库中没有再检查session
interview_key = f"interview_{interview_id}"
if interview_key not in session:
return jsonify({"error": "面试不存在或已结束"}), 400
# 如果session中有同步到内存数据库
interviews_db[interview_id] = session[interview_key]
interview_data = interviews_db[interview_id]
if not interview_data["is_active"]:
return jsonify({"error": "面试已结束"}), 400
if not user_answer:
return jsonify({"error": "请输入你的回答"}), 400
conversation_history = interview_data["conversation_history"]
if request_feedback:
last_question = ""
logger.debug(f"查找最后一个问题,对话历史长度:{len(conversation_history)}")
for msg in reversed(conversation_history):
logger.debug(f"检查消息:角色={msg['role']}, 内容={msg['content'][:50]}...")
if msg["role"] == "assistant" and ("" in msg["content"] or "?" in msg["content"]):
last_question = msg["content"]
logger.debug(f"找到最后一个问题:{last_question[:50]}...")
break
if last_question:
try:
feedback = deepseek_service.chat_with_feedback(
user_input=last_question,
user_answer=user_answer,
conversation_history=conversation_history[:-1]
)
conversation_history.append({"role": "user", "content": user_answer})
conversation_history.append(feedback)
return jsonify({
"feedback": feedback["content"],
"ended": False
})
except Exception as e:
logger.error(f"生成反馈失败:{str(e)}", exc_info=True)
return jsonify({"error": f"生成反馈失败:{str(e)}"}), 500
else:
logger.warning("没有找到最后一个问题")
return jsonify({"error": "没有找到相关问题"}), 400
conversation_history.append({"role": "user", "content": user_answer})
interview_data["question_count"] += 1
current_phase = interview_data["current_phase"]
phase_order = ["intro", "professional", "scenario", "career", "closing"]
current_index = phase_order.index(current_phase)
questions_in_phase = QUESTION_COUNTS.get(current_phase, 1)
next_question = None
if interview_data["question_count"] >= questions_in_phase:
if current_index < len(phase_order) - 1:
next_phase = phase_order[current_index + 1]
interview_data["current_phase"] = next_phase
interview_data["question_count"] = 0
if next_phase == "closing":
conversation_history.append({
"role": "assistant",
"content": "面试结束!感谢你的参与。点击下方按钮获取本次面试的详细反馈。"
})
interview_data["is_active"] = False
return jsonify({
"question": None,
"feedback": "面试结束",
"ended": True,
"conversation_history": conversation_history[-10:]
})
else:
phase_names = {
"intro": "自我介绍",
"professional": "专业能力",
"scenario": "情景假设",
"career": "职业规划"
}
try:
next_question = deepseek_service.generate_interview_question(
job_position=interview_data["job_position"],
difficulty=interview_data["difficulty"],
conversation_history=conversation_history,
phase=next_phase
)
conversation_history.append({
"role": "assistant",
"content": f"{phase_names.get(next_phase, next_phase)}阶段)\n\n{next_question}"
})
except Exception as e:
return jsonify({"error": f"生成问题失败:{str(e)}"}), 500
else:
try:
next_question = deepseek_service.generate_interview_question(
job_position=interview_data["job_position"],
difficulty=interview_data["difficulty"],
conversation_history=conversation_history,
phase=current_phase
)
conversation_history.append({"role": "assistant", "content": next_question})
except Exception as e:
return jsonify({"error": f"生成问题失败:{str(e)}"}), 500
# 同时更新内存数据库和session中的数据
interviews_db[interview_id] = interview_data
session[f"interview_{interview_id}"] = interview_data
return jsonify({
"question": next_question,
"feedback": None,
"ended": False,
"phase": interview_data["current_phase"]
})
@app.route("/api/interview/feedback", methods=["POST"])
def get_interview_feedback():
logger.info("接收到面试反馈请求")
try:
# 首先确保能够获取请求数据
if not request.is_json:
logger.warning("请求数据不是JSON格式")
return jsonify({"error": "请求数据必须是JSON格式"}), 400
data = request.json
logger.debug(f"请求数据:{data}")
# 检查必要参数
interview_id = data.get("interview_id", "").strip()
conversation_history = data.get("conversation_history", [])
if not interview_id:
logger.warning("面试ID无效")
return jsonify({"error": "无效的面试ID"}), 400
if not conversation_history:
logger.warning("没有提供面试对话历史")
return jsonify({"error": "没有提供面试对话历史"}), 400
# 获取岗位信息
job_position = ""
if interview_id in interviews_db:
job_position = interviews_db[interview_id].get("job_position", "")
logger.debug(f"岗位信息:{job_position}")
logger.debug(f"对话历史长度:{len(conversation_history)}")
# 构建系统提示
system_prompt = """作为一位专业的面试评估专家,请对整场面试进行全面评估。
请提供
1. 整体表现评分0-100和评级优秀/良好/一般/需改进
2. 各轮回答的详细分析针对每个问题和回答给出具体评价
3. strengths优势- 列出至少3点
4. areas_for_improvement需要改进的方面- 列出至少3点
5. 具体的准备建议针对改进点给出可操作的建议
请用中文回复格式清晰结构化避免过于笼统的描述"""
# 构建对话文本
conversation_text = "\n\n".join([
f"{'面试官' if msg['role'] == 'assistant' else '候选人'}{msg['content']}"
for msg in conversation_history
])
# 构建用户提示
if job_position:
user_prompt = f"请分析以下针对{job_position}岗位的面试对话并给出综合反馈:\n\n{conversation_text}"
else:
user_prompt = f"请分析以下面试对话并给出综合反馈:\n\n{conversation_text}"
# 构建完整的消息
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
logger.debug("准备调用DeepSeek API生成反馈")
logger.debug(f"API请求消息数量{len(messages)}")
# 调用DeepSeek API
response = deepseek_service._call_api(messages)
logger.debug("DeepSeek API调用成功")
# 处理API响应
if not response or "choices" not in response or not response["choices"]:
logger.error("API响应格式错误缺少choices字段")
return jsonify({"error": "生成反馈失败API响应格式错误"}), 500
feedback = response["choices"][0]["message"]["content"]
logger.info("反馈生成成功")
logger.debug(f"生成的反馈内容长度:{len(feedback)}字符")
logger.debug(f"生成的反馈内容开头:{feedback[:100]}...")
return jsonify({"feedback": feedback})
except Exception as e:
logger.error(f"生成面试反馈失败:{str(e)}", exc_info=True)
# 返回更具体的错误信息
return jsonify({"error": f"生成面试反馈失败:{str(e)}", "details": str(type(e).__name__)}), 500
if __name__ == "__main__":
app.run(
host=Config.APP_HOST,
port=Config.APP_PORT,
debug=False
)