435 lines
13 KiB
Python
435 lines
13 KiB
Python
|
|
import argparse
|
||
|
|
import os
|
||
|
|
|
||
|
|
import numpy
|
||
|
|
import psutil
|
||
|
|
from onnx import TensorProto
|
||
|
|
|
||
|
|
"""
|
||
|
|
This profiler tool could run a transformer model and print out the kernel time spent on each Node of the model.
|
||
|
|
Example of profiling of longformer model:
|
||
|
|
python profiler.py --model longformer-base-4096_fp32.onnx --batch_size 1 --sequence_length 4096 --global_length 8 --samples 1000 --thread_num 8 --dummy_inputs longformer --use_gpu
|
||
|
|
Example of importing profile result file from onnxruntime_perf_test:
|
||
|
|
python profiler.py --input profile_2021-10-25_12-02-41.json
|
||
|
|
"""
|
||
|
|
|
||
|
|
|
||
|
|
def parse_arguments(argv=None):
|
||
|
|
parser = argparse.ArgumentParser()
|
||
|
|
|
||
|
|
parser.add_argument(
|
||
|
|
"-i",
|
||
|
|
"--input",
|
||
|
|
required=False,
|
||
|
|
type=str,
|
||
|
|
help="Set the input file for reading the profile results",
|
||
|
|
)
|
||
|
|
|
||
|
|
parser.add_argument(
|
||
|
|
"-m",
|
||
|
|
"--model",
|
||
|
|
required=False,
|
||
|
|
type=str,
|
||
|
|
help="onnx model path to run profiling. Required when --input is not specified.",
|
||
|
|
)
|
||
|
|
|
||
|
|
parser.add_argument(
|
||
|
|
"-b",
|
||
|
|
"--batch_size",
|
||
|
|
required=False,
|
||
|
|
type=int,
|
||
|
|
default=1,
|
||
|
|
help="batch size of input",
|
||
|
|
)
|
||
|
|
|
||
|
|
parser.add_argument(
|
||
|
|
"-s",
|
||
|
|
"--sequence_length",
|
||
|
|
required=False,
|
||
|
|
type=int,
|
||
|
|
default=32,
|
||
|
|
help="sequence length of input",
|
||
|
|
)
|
||
|
|
|
||
|
|
parser.add_argument(
|
||
|
|
"--past_sequence_length",
|
||
|
|
required=False,
|
||
|
|
type=int,
|
||
|
|
default=1,
|
||
|
|
help="past sequence length for gpt2",
|
||
|
|
)
|
||
|
|
|
||
|
|
parser.add_argument(
|
||
|
|
"--global_length",
|
||
|
|
required=False,
|
||
|
|
type=int,
|
||
|
|
default=1,
|
||
|
|
help="number of global tokens for longformer",
|
||
|
|
)
|
||
|
|
|
||
|
|
parser.add_argument(
|
||
|
|
"--samples",
|
||
|
|
required=False,
|
||
|
|
type=int,
|
||
|
|
default=1000,
|
||
|
|
help="number of samples to test. Set it large enough to reduce the variance of performance result.",
|
||
|
|
)
|
||
|
|
|
||
|
|
parser.add_argument(
|
||
|
|
"--threshold",
|
||
|
|
required=False,
|
||
|
|
type=float,
|
||
|
|
default=0.01,
|
||
|
|
help="Threshold of run time ratio among all nodes. Nodes with larger ratio will show in top expensive nodes.",
|
||
|
|
)
|
||
|
|
|
||
|
|
parser.add_argument(
|
||
|
|
"--thread_num",
|
||
|
|
required=False,
|
||
|
|
type=int,
|
||
|
|
default=-1,
|
||
|
|
help="number of threads to use",
|
||
|
|
)
|
||
|
|
|
||
|
|
parser.add_argument(
|
||
|
|
"--input_ids_name",
|
||
|
|
required=False,
|
||
|
|
type=str,
|
||
|
|
default=None,
|
||
|
|
help="input name for input IDs, for bert",
|
||
|
|
)
|
||
|
|
parser.add_argument(
|
||
|
|
"--segment_ids_name",
|
||
|
|
required=False,
|
||
|
|
type=str,
|
||
|
|
default=None,
|
||
|
|
help="input name for segment IDs, for bert",
|
||
|
|
)
|
||
|
|
parser.add_argument(
|
||
|
|
"--input_mask_name",
|
||
|
|
required=False,
|
||
|
|
type=str,
|
||
|
|
default=None,
|
||
|
|
help="input name for attention mask, for bert",
|
||
|
|
)
|
||
|
|
|
||
|
|
parser.add_argument(
|
||
|
|
"--dummy_inputs",
|
||
|
|
required=False,
|
||
|
|
default="default",
|
||
|
|
choices=["bert", "gpt2", "longformer", "default"],
|
||
|
|
help="Type of model inputs. The default will create dummy inputs with ones.",
|
||
|
|
)
|
||
|
|
|
||
|
|
parser.add_argument("-g", "--use_gpu", required=False, action="store_true", help="use GPU")
|
||
|
|
parser.set_defaults(use_gpu=False)
|
||
|
|
|
||
|
|
parser.add_argument(
|
||
|
|
"--provider",
|
||
|
|
required=False,
|
||
|
|
type=str,
|
||
|
|
default="cuda",
|
||
|
|
help="Execution provider to use",
|
||
|
|
)
|
||
|
|
|
||
|
|
parser.add_argument(
|
||
|
|
"--basic_optimization",
|
||
|
|
required=False,
|
||
|
|
action="store_true",
|
||
|
|
help="Enable only basic graph optimizations. By default, all optimizations are enabled in OnnxRuntime",
|
||
|
|
)
|
||
|
|
parser.set_defaults(basic_optimization=False)
|
||
|
|
|
||
|
|
parser.add_argument(
|
||
|
|
"--kernel_time_only",
|
||
|
|
required=False,
|
||
|
|
action="store_true",
|
||
|
|
help="Only include the kernel time and no fence time",
|
||
|
|
)
|
||
|
|
parser.set_defaults(kernel_time_only=False)
|
||
|
|
|
||
|
|
parser.add_argument("-v", "--verbose", required=False, action="store_true")
|
||
|
|
parser.set_defaults(verbose=False)
|
||
|
|
|
||
|
|
return parser.parse_args(argv)
|
||
|
|
|
||
|
|
|
||
|
|
def run_profile(onnx_model_path, use_gpu, provider, basic_optimization, thread_num, all_inputs):
|
||
|
|
from benchmark_helper import create_onnxruntime_session # noqa: PLC0415
|
||
|
|
|
||
|
|
session = create_onnxruntime_session(
|
||
|
|
onnx_model_path,
|
||
|
|
use_gpu,
|
||
|
|
provider,
|
||
|
|
enable_all_optimization=not basic_optimization,
|
||
|
|
num_threads=thread_num,
|
||
|
|
enable_profiling=True,
|
||
|
|
)
|
||
|
|
|
||
|
|
for inputs in all_inputs:
|
||
|
|
_ = session.run(None, inputs)
|
||
|
|
|
||
|
|
profile_file = session.end_profiling()
|
||
|
|
return profile_file
|
||
|
|
|
||
|
|
|
||
|
|
def get_dim_from_type_proto(dim):
|
||
|
|
return getattr(dim, dim.WhichOneof("value")) if type(dim.WhichOneof("value")) == str else None # noqa: E721
|
||
|
|
|
||
|
|
|
||
|
|
def get_shape_from_type_proto(type_proto):
|
||
|
|
return [get_dim_from_type_proto(d) for d in type_proto.tensor_type.shape.dim]
|
||
|
|
|
||
|
|
|
||
|
|
def create_dummy_inputs(onnx_model, batch_size, sequence_length, samples):
|
||
|
|
"""Create dummy inputs for ONNX model.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
onnx_model (OnnxModel): ONNX model
|
||
|
|
batch_size (int): batch size
|
||
|
|
sequence_length (int): sequence length
|
||
|
|
samples (int): number of samples
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
List[Dict]: list of inputs
|
||
|
|
"""
|
||
|
|
dummy_inputs = {}
|
||
|
|
for graph_input in onnx_model.get_graph_inputs_excluding_initializers():
|
||
|
|
shape = get_shape_from_type_proto(graph_input.type)
|
||
|
|
symbol_dims = []
|
||
|
|
for i, dim in enumerate(shape):
|
||
|
|
if isinstance(dim, str):
|
||
|
|
symbol_dims.append(i)
|
||
|
|
|
||
|
|
# allowed symbolic dimensions: batch_size and sequence_length
|
||
|
|
if len(symbol_dims) > 2:
|
||
|
|
return None
|
||
|
|
if len(symbol_dims) > 0:
|
||
|
|
shape[symbol_dims[0]] = batch_size
|
||
|
|
if len(symbol_dims) > 1:
|
||
|
|
shape[symbol_dims[1]] = sequence_length
|
||
|
|
|
||
|
|
elem_type = graph_input.type.tensor_type.elem_type
|
||
|
|
assert elem_type in [TensorProto.FLOAT, TensorProto.INT32, TensorProto.INT64]
|
||
|
|
data_type = (
|
||
|
|
numpy.float32
|
||
|
|
if elem_type == TensorProto.FLOAT
|
||
|
|
else (numpy.int64 if elem_type == TensorProto.INT64 else numpy.int32)
|
||
|
|
)
|
||
|
|
data = numpy.ones(shape, dtype=data_type)
|
||
|
|
dummy_inputs[graph_input.name] = data
|
||
|
|
|
||
|
|
all_inputs = [dummy_inputs for _ in range(samples)]
|
||
|
|
return all_inputs
|
||
|
|
|
||
|
|
|
||
|
|
def create_bert_inputs(
|
||
|
|
onnx_model,
|
||
|
|
batch_size,
|
||
|
|
sequence_length,
|
||
|
|
samples,
|
||
|
|
input_ids_name=None,
|
||
|
|
segment_ids_name=None,
|
||
|
|
input_mask_name=None,
|
||
|
|
):
|
||
|
|
"""Create dummy inputs for BERT model.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
onnx_model (OnnxModel): ONNX model
|
||
|
|
batch_size (int): batch size
|
||
|
|
sequence_length (int): sequence length
|
||
|
|
samples (int): number of samples
|
||
|
|
input_ids_name (str, optional): Name of graph input for input IDs. Defaults to None.
|
||
|
|
segment_ids_name (str, optional): Name of graph input for segment IDs. Defaults to None.
|
||
|
|
input_mask_name (str, optional): Name of graph input for attention mask. Defaults to None.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
List[Dict]: list of inputs
|
||
|
|
"""
|
||
|
|
from bert_test_data import find_bert_inputs, generate_test_data # noqa: PLC0415
|
||
|
|
|
||
|
|
input_ids, segment_ids, input_mask = find_bert_inputs(onnx_model, input_ids_name, segment_ids_name, input_mask_name)
|
||
|
|
all_inputs = generate_test_data(
|
||
|
|
batch_size,
|
||
|
|
sequence_length,
|
||
|
|
test_cases=samples,
|
||
|
|
seed=123,
|
||
|
|
verbose=False,
|
||
|
|
input_ids=input_ids,
|
||
|
|
segment_ids=segment_ids,
|
||
|
|
input_mask=input_mask,
|
||
|
|
random_mask_length=False,
|
||
|
|
)
|
||
|
|
|
||
|
|
return all_inputs
|
||
|
|
|
||
|
|
|
||
|
|
def create_gpt2_inputs(onnx_model, batch_size, sequence_length, past_sequence_length, samples):
|
||
|
|
"""Create dummy inputs for GPT-2 model.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
onnx_model (OnnxModel): ONNX model
|
||
|
|
batch_size (int): batch size
|
||
|
|
sequence_length (int): sequence length
|
||
|
|
past_sequence_length (int): past sequence length
|
||
|
|
samples (int): number of samples
|
||
|
|
|
||
|
|
Raises:
|
||
|
|
RuntimeError: symbolic is not supported. Use the tool convert_to_onnx.py to export ONNX model instead.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
List[Dict]: list of inputs
|
||
|
|
"""
|
||
|
|
# The symbolic names shall be same as those used in Gpt2Helper.export_onnx(...) function.
|
||
|
|
symbols = {
|
||
|
|
"batch_size": batch_size,
|
||
|
|
"seq_len": sequence_length,
|
||
|
|
"past_seq_len": past_sequence_length,
|
||
|
|
"total_seq_len": sequence_length + past_sequence_length,
|
||
|
|
}
|
||
|
|
|
||
|
|
dummy_inputs = {}
|
||
|
|
for graph_input in onnx_model.get_graph_inputs_excluding_initializers():
|
||
|
|
shape = get_shape_from_type_proto(graph_input.type)
|
||
|
|
for i, dim in enumerate(shape):
|
||
|
|
if isinstance(dim, str):
|
||
|
|
if dim not in symbols:
|
||
|
|
raise RuntimeError(f"symbol is not supported: {dim}")
|
||
|
|
else:
|
||
|
|
shape[i] = symbols[dim]
|
||
|
|
|
||
|
|
elem_type = graph_input.type.tensor_type.elem_type
|
||
|
|
assert elem_type in [TensorProto.FLOAT, TensorProto.INT32, TensorProto.INT64]
|
||
|
|
data_type = (
|
||
|
|
numpy.float32
|
||
|
|
if elem_type == TensorProto.FLOAT
|
||
|
|
else (numpy.int64 if elem_type == TensorProto.INT64 else numpy.int32)
|
||
|
|
)
|
||
|
|
data = numpy.ones(shape, dtype=data_type)
|
||
|
|
dummy_inputs[graph_input.name] = data
|
||
|
|
|
||
|
|
all_inputs = [dummy_inputs for _ in range(samples)]
|
||
|
|
return all_inputs
|
||
|
|
|
||
|
|
|
||
|
|
def create_longformer_inputs(onnx_model, batch_size, sequence_length, global_length, samples):
|
||
|
|
"""Create dummy inputs for Longformer model.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
onnx_model (OnnxModel): ONNX model
|
||
|
|
batch_size (int): batch size
|
||
|
|
sequence_length (int): sequence length
|
||
|
|
global_length (int): number of global tokens
|
||
|
|
samples (int): number of samples
|
||
|
|
|
||
|
|
Raises:
|
||
|
|
RuntimeError: symbolic is not supported. Use the tool convert_longformer_to_onnx.py to export ONNX model instead.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
List[Dict]: list of inputs
|
||
|
|
"""
|
||
|
|
symbols = {"batch_size": batch_size, "sequence_length": sequence_length}
|
||
|
|
|
||
|
|
dummy_inputs = {}
|
||
|
|
for graph_input in onnx_model.get_graph_inputs_excluding_initializers():
|
||
|
|
shape = get_shape_from_type_proto(graph_input.type)
|
||
|
|
for i, dim in enumerate(shape):
|
||
|
|
if isinstance(dim, str):
|
||
|
|
if dim not in symbols:
|
||
|
|
raise RuntimeError(f"symbol is not supported: {dim}")
|
||
|
|
else:
|
||
|
|
shape[i] = symbols[dim]
|
||
|
|
|
||
|
|
elem_type = graph_input.type.tensor_type.elem_type
|
||
|
|
assert elem_type in [TensorProto.FLOAT, TensorProto.INT32, TensorProto.INT64]
|
||
|
|
data_type = (
|
||
|
|
numpy.float32
|
||
|
|
if elem_type == TensorProto.FLOAT
|
||
|
|
else (numpy.int64 if elem_type == TensorProto.INT64 else numpy.int32)
|
||
|
|
)
|
||
|
|
|
||
|
|
if "global" in graph_input.name:
|
||
|
|
data = numpy.zeros(shape, dtype=data_type)
|
||
|
|
data[:, :global_length] = 1
|
||
|
|
else:
|
||
|
|
data = numpy.ones(shape, dtype=data_type)
|
||
|
|
dummy_inputs[graph_input.name] = data
|
||
|
|
|
||
|
|
all_inputs = [dummy_inputs for _ in range(samples)]
|
||
|
|
return all_inputs
|
||
|
|
|
||
|
|
|
||
|
|
def run(args):
|
||
|
|
num_threads = args.thread_num if args.thread_num > 0 else psutil.cpu_count(logical=False)
|
||
|
|
|
||
|
|
# Set OMP environment variable before importing onnxruntime. Needed for cpu only, and no impact for onnxruntime-gpu package.
|
||
|
|
if "OMP_NUM_THREADS" not in os.environ:
|
||
|
|
os.environ["OMP_NUM_THREADS"] = str(num_threads)
|
||
|
|
|
||
|
|
from onnx import load # noqa: PLC0415
|
||
|
|
from onnx_model import OnnxModel # noqa: PLC0415
|
||
|
|
|
||
|
|
onnx_model = OnnxModel(load(args.model))
|
||
|
|
|
||
|
|
all_inputs = None
|
||
|
|
if args.dummy_inputs == "bert":
|
||
|
|
all_inputs = create_bert_inputs(
|
||
|
|
onnx_model,
|
||
|
|
args.batch_size,
|
||
|
|
args.sequence_length,
|
||
|
|
args.samples,
|
||
|
|
args.input_ids_name,
|
||
|
|
args.segment_ids_name,
|
||
|
|
args.input_mask_name,
|
||
|
|
)
|
||
|
|
elif args.dummy_inputs == "gpt2":
|
||
|
|
all_inputs = create_gpt2_inputs(
|
||
|
|
onnx_model,
|
||
|
|
args.batch_size,
|
||
|
|
args.sequence_length,
|
||
|
|
args.past_sequence_length,
|
||
|
|
args.samples,
|
||
|
|
)
|
||
|
|
elif args.dummy_inputs == "longformer":
|
||
|
|
all_inputs = create_longformer_inputs(
|
||
|
|
onnx_model,
|
||
|
|
args.batch_size,
|
||
|
|
args.sequence_length,
|
||
|
|
args.global_length,
|
||
|
|
args.samples,
|
||
|
|
)
|
||
|
|
else: # default
|
||
|
|
all_inputs = create_dummy_inputs(onnx_model, args.batch_size, args.sequence_length, args.samples)
|
||
|
|
|
||
|
|
profile_file = run_profile(
|
||
|
|
args.model,
|
||
|
|
args.use_gpu,
|
||
|
|
args.provider,
|
||
|
|
args.basic_optimization,
|
||
|
|
args.thread_num,
|
||
|
|
all_inputs,
|
||
|
|
)
|
||
|
|
|
||
|
|
return profile_file
|
||
|
|
|
||
|
|
|
||
|
|
if __name__ == "__main__":
|
||
|
|
arguments = parse_arguments()
|
||
|
|
print("Arguments", arguments)
|
||
|
|
|
||
|
|
from benchmark_helper import setup_logger
|
||
|
|
|
||
|
|
setup_logger(arguments.verbose)
|
||
|
|
|
||
|
|
if not arguments.input:
|
||
|
|
assert arguments.model, "requires either --model to run profiling or --input to read profiling results"
|
||
|
|
profile_file = run(arguments)
|
||
|
|
else:
|
||
|
|
profile_file = arguments.input
|
||
|
|
from profile_result_processor import process_results
|
||
|
|
|
||
|
|
results = process_results(profile_file, arguments)
|
||
|
|
|
||
|
|
for line in results:
|
||
|
|
print(line)
|