import json import re from typing import TypeVar import yaml from langchain_core.exceptions import OutputParserException from langchain_core.output_parsers import BaseOutputParser from pydantic import BaseModel, ValidationError from typing_extensions import override from langchain_classic.output_parsers.format_instructions import ( YAML_FORMAT_INSTRUCTIONS, ) T = TypeVar("T", bound=BaseModel) class YamlOutputParser(BaseOutputParser[T]): """Parse YAML output using a Pydantic model.""" pydantic_object: type[T] """The Pydantic model to parse.""" pattern: re.Pattern = re.compile( r"^```(?:ya?ml)?(?P[^`]*)", re.MULTILINE | re.DOTALL, ) """Regex pattern to match yaml code blocks within triple backticks with optional yaml or yml prefix.""" @override def parse(self, text: str) -> T: try: # Greedy search for 1st yaml candidate. match = re.search(self.pattern, text.strip()) # If no backticks were present, try to parse the entire output as yaml. yaml_str = match.group("yaml") if match else text json_object = yaml.safe_load(yaml_str) return self.pydantic_object.model_validate(json_object) except (yaml.YAMLError, ValidationError) as e: name = self.pydantic_object.__name__ msg = f"Failed to parse {name} from completion {text}. Got: {e}" raise OutputParserException(msg, llm_output=text) from e @override def get_format_instructions(self) -> str: # Copy schema to avoid altering original Pydantic schema. schema = dict(self.pydantic_object.model_json_schema().items()) # Remove extraneous fields. reduced_schema = schema if "title" in reduced_schema: del reduced_schema["title"] if "type" in reduced_schema: del reduced_schema["type"] # Ensure yaml in context is well-formed with double quotes. schema_str = json.dumps(reduced_schema) return YAML_FORMAT_INSTRUCTIONS.format(schema=schema_str) @property def _type(self) -> str: return "yaml" @property @override def OutputType(self) -> type[T]: return self.pydantic_object