group-wbl/.venv/lib/python3.13/site-packages/langchain_classic/agents/xml/base.py
2026-01-09 09:48:03 +08:00

237 lines
8.0 KiB
Python

from collections.abc import Sequence
from typing import Any
from langchain_core._api import deprecated
from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.callbacks import Callbacks
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts.base import BasePromptTemplate
from langchain_core.prompts.chat import AIMessagePromptTemplate, ChatPromptTemplate
from langchain_core.runnables import Runnable, RunnablePassthrough
from langchain_core.tools import BaseTool
from langchain_core.tools.render import ToolsRenderer, render_text_description
from typing_extensions import override
from langchain_classic.agents.agent import BaseSingleActionAgent
from langchain_classic.agents.format_scratchpad import format_xml
from langchain_classic.agents.output_parsers import XMLAgentOutputParser
from langchain_classic.agents.xml.prompt import agent_instructions
from langchain_classic.chains.llm import LLMChain
@deprecated("0.1.0", alternative="create_xml_agent", removal="1.0")
class XMLAgent(BaseSingleActionAgent):
"""Agent that uses XML tags.
Args:
tools: list of tools the agent can choose from
llm_chain: The LLMChain to call to predict the next action
Examples:
```python
from langchain_classic.agents import XMLAgent
from langchain
tools = ...
model =
```
"""
tools: list[BaseTool]
"""List of tools this agent has access to."""
llm_chain: LLMChain
"""Chain to use to predict action."""
@property
@override
def input_keys(self) -> list[str]:
return ["input"]
@staticmethod
def get_default_prompt() -> ChatPromptTemplate:
"""Return the default prompt for the XML agent."""
base_prompt = ChatPromptTemplate.from_template(agent_instructions)
return base_prompt + AIMessagePromptTemplate.from_template(
"{intermediate_steps}",
)
@staticmethod
def get_default_output_parser() -> XMLAgentOutputParser:
"""Return an XMLAgentOutputParser."""
return XMLAgentOutputParser()
@override
def plan(
self,
intermediate_steps: list[tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> AgentAction | AgentFinish:
log = ""
for action, observation in intermediate_steps:
log += (
f"<tool>{action.tool}</tool><tool_input>{action.tool_input}"
f"</tool_input><observation>{observation}</observation>"
)
tools = ""
for tool in self.tools:
tools += f"{tool.name}: {tool.description}\n"
inputs = {
"intermediate_steps": log,
"tools": tools,
"question": kwargs["input"],
"stop": ["</tool_input>", "</final_answer>"],
}
response = self.llm_chain(inputs, callbacks=callbacks)
return response[self.llm_chain.output_key]
@override
async def aplan(
self,
intermediate_steps: list[tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> AgentAction | AgentFinish:
log = ""
for action, observation in intermediate_steps:
log += (
f"<tool>{action.tool}</tool><tool_input>{action.tool_input}"
f"</tool_input><observation>{observation}</observation>"
)
tools = ""
for tool in self.tools:
tools += f"{tool.name}: {tool.description}\n"
inputs = {
"intermediate_steps": log,
"tools": tools,
"question": kwargs["input"],
"stop": ["</tool_input>", "</final_answer>"],
}
response = await self.llm_chain.acall(inputs, callbacks=callbacks)
return response[self.llm_chain.output_key]
def create_xml_agent(
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
prompt: BasePromptTemplate,
tools_renderer: ToolsRenderer = render_text_description,
*,
stop_sequence: bool | list[str] = True,
) -> Runnable:
r"""Create an agent that uses XML to format its logic.
Args:
llm: LLM to use as the agent.
tools: Tools this agent has access to.
prompt: The prompt to use, must have input keys
`tools`: contains descriptions for each tool.
`agent_scratchpad`: contains previous agent actions and tool outputs.
tools_renderer: This controls how the tools are converted into a string and
then passed into the LLM.
stop_sequence: bool or list of str.
If `True`, adds a stop token of "</tool_input>" to avoid hallucinates.
If `False`, does not add a stop token.
If a list of str, uses the provided list as the stop tokens.
You may to set this to False if the LLM you are using
does not support stop sequences.
Returns:
A Runnable sequence representing an agent. It takes as input all the same input
variables as the prompt passed in does. It returns as output either an
AgentAction or AgentFinish.
Example:
```python
from langchain_classic import hub
from langchain_anthropic import ChatAnthropic
from langchain_classic.agents import AgentExecutor, create_xml_agent
prompt = hub.pull("hwchase17/xml-agent-convo")
model = ChatAnthropic(model="claude-3-haiku-20240307")
tools = ...
agent = create_xml_agent(model, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools)
agent_executor.invoke({"input": "hi"})
# Use with chat history
from langchain_core.messages import AIMessage, HumanMessage
agent_executor.invoke(
{
"input": "what's my name?",
# Notice that chat_history is a string
# since this prompt is aimed at LLMs, not chat models
"chat_history": "Human: My name is Bob\nAI: Hello Bob!",
}
)
```
Prompt:
The prompt must have input keys:
* `tools`: contains descriptions for each tool.
* `agent_scratchpad`: contains previous agent actions and tool outputs as
an XML string.
Here's an example:
```python
from langchain_core.prompts import PromptTemplate
template = '''You are a helpful assistant. Help the user answer any questions.
You have access to the following tools:
{tools}
In order to use a tool, you can use <tool></tool> and <tool_input></tool_input> tags. You will then get back a response in the form <observation></observation>
For example, if you have a tool called 'search' that could run a google search, in order to search for the weather in SF you would respond:
<tool>search</tool><tool_input>weather in SF</tool_input>
<observation>64 degrees</observation>
When you are done, respond with a final answer between <final_answer></final_answer>. For example:
<final_answer>The weather in SF is 64 degrees</final_answer>
Begin!
Previous Conversation:
{chat_history}
Question: {input}
{agent_scratchpad}'''
prompt = PromptTemplate.from_template(template)
```
""" # noqa: E501
missing_vars = {"tools", "agent_scratchpad"}.difference(
prompt.input_variables + list(prompt.partial_variables),
)
if missing_vars:
msg = f"Prompt missing required variables: {missing_vars}"
raise ValueError(msg)
prompt = prompt.partial(
tools=tools_renderer(list(tools)),
)
if stop_sequence:
stop = ["</tool_input>"] if stop_sequence is True else stop_sequence
llm_with_stop = llm.bind(stop=stop)
else:
llm_with_stop = llm
return (
RunnablePassthrough.assign(
agent_scratchpad=lambda x: format_xml(x["intermediate_steps"]),
)
| prompt
| llm_with_stop
| XMLAgentOutputParser()
)