51 lines
1.5 KiB
Python
51 lines
1.5 KiB
Python
"""Matrix decomposition algorithms.
|
|
|
|
These include PCA, NMF, ICA, and more. Most of the algorithms of this module can be
|
|
regarded as dimensionality reduction techniques.
|
|
"""
|
|
|
|
# Authors: The scikit-learn developers
|
|
# SPDX-License-Identifier: BSD-3-Clause
|
|
|
|
from sklearn.decomposition._dict_learning import (
|
|
DictionaryLearning,
|
|
MiniBatchDictionaryLearning,
|
|
SparseCoder,
|
|
dict_learning,
|
|
dict_learning_online,
|
|
sparse_encode,
|
|
)
|
|
from sklearn.decomposition._factor_analysis import FactorAnalysis
|
|
from sklearn.decomposition._fastica import FastICA, fastica
|
|
from sklearn.decomposition._incremental_pca import IncrementalPCA
|
|
from sklearn.decomposition._kernel_pca import KernelPCA
|
|
from sklearn.decomposition._lda import LatentDirichletAllocation
|
|
from sklearn.decomposition._nmf import NMF, MiniBatchNMF, non_negative_factorization
|
|
from sklearn.decomposition._pca import PCA
|
|
from sklearn.decomposition._sparse_pca import MiniBatchSparsePCA, SparsePCA
|
|
from sklearn.decomposition._truncated_svd import TruncatedSVD
|
|
from sklearn.utils.extmath import randomized_svd
|
|
|
|
__all__ = [
|
|
"NMF",
|
|
"PCA",
|
|
"DictionaryLearning",
|
|
"FactorAnalysis",
|
|
"FastICA",
|
|
"IncrementalPCA",
|
|
"KernelPCA",
|
|
"LatentDirichletAllocation",
|
|
"MiniBatchDictionaryLearning",
|
|
"MiniBatchNMF",
|
|
"MiniBatchSparsePCA",
|
|
"SparseCoder",
|
|
"SparsePCA",
|
|
"TruncatedSVD",
|
|
"dict_learning",
|
|
"dict_learning_online",
|
|
"fastica",
|
|
"non_negative_factorization",
|
|
"randomized_svd",
|
|
"sparse_encode",
|
|
]
|