""" Multi-Agent Decision Workshop - 主应用 多 Agent 决策工作坊:通过多角色辩论帮助用户做出更好的决策 """ import streamlit as st import os from dotenv import load_dotenv # 加载环境变量 load_dotenv() from agents import get_all_agents, get_recommended_agents, AGENT_PROFILES from orchestrator import DebateManager, DebateConfig from orchestrator.research_manager import ResearchManager, ResearchConfig from report import ReportGenerator from utils import LLMClient import config # ==================== 页面配置 ==================== st.set_page_config( page_title="🎭 多 Agent 决策工作坊", page_icon="🎭", layout="wide", initial_sidebar_state="expanded" ) # ==================== 样式 ==================== st.markdown(""" """, unsafe_allow_html=True) # ==================== 常量定义 ==================== # 从环境变量读取 API Key(隐藏在 .env 文件中) DEFAULT_API_KEY = os.getenv("AIHUBMIX_API_KEY", "") # 支持的模型列表 from config import AVAILABLE_MODELS, RESEARCH_MODEL_ROLES # 决策类型 DECISION_TYPES = { "product": "产品方案", "business": "商业决策", "tech": "技术选型", "personal": "个人规划" } # ==================== 初始化 Session State ==================== if "mode" not in st.session_state: st.session_state.mode = "Deep Research" # Debate State if "debate_started" not in st.session_state: st.session_state.debate_started = False if "debate_finished" not in st.session_state: st.session_state.debate_finished = False if "speeches" not in st.session_state: st.session_state.speeches = [] if "report" not in st.session_state: st.session_state.report = "" if "custom_agents" not in st.session_state: st.session_state.custom_agents = {} # Research State if "research_plan" not in st.session_state: st.session_state.research_plan = "" if "research_started" not in st.session_state: st.session_state.research_started = False if "research_output" not in st.session_state: st.session_state.research_output = "" # Final report if "research_steps_output" not in st.session_state: st.session_state.research_steps_output = [] # List of step results # ==================== 侧边栏:配置 ==================== with st.sidebar: st.header("⚙️ 设置") # 全局 API Key 设置 with st.expander("🔑 API Key 设置", expanded=True): use_custom_key = st.checkbox("使用自定义 API Key") if use_custom_key: api_key = st.text_input( "API Key", type="password", help="留空则使用环境变量中的 Key" ) else: api_key = DEFAULT_API_KEY st.divider() # 模式选择 mode = st.radio( "📊 选择模式", ["Deep Research", "Debate Workshop"], index=0 if st.session_state.mode == "Deep Research" else 1 ) st.session_state.mode = mode st.divider() if mode == "Deep Research": st.subheader("🧪 研究模型配置") # 3 个角色的模型配置 roles_config = {} for role_key, role_info in config.RESEARCH_MODEL_ROLES.items(): roles_config[role_key] = st.selectbox( f"{role_info['name']} ({role_info['description']})", options=list(AVAILABLE_MODELS.keys()), index=list(AVAILABLE_MODELS.keys()).index(role_info['default_model']) if role_info['default_model'] in AVAILABLE_MODELS else 0, key=f"model_{role_key}" ) else: # Debate Workshop # 模型选择 model = st.selectbox( "🤖 选择通用模型", options=list(AVAILABLE_MODELS.keys()), format_func=lambda x: AVAILABLE_MODELS[x], index=0, help="选择用于辩论的 AI 模型" ) # 辩论配置 max_rounds = st.slider( "🔄 辩论轮数", min_value=1, max_value=4, value=2, help="每轮所有 Agent 都会发言一次" ) st.divider() # ==================== 自定义角色 (Debate Only) ==================== st.subheader("✨ 自定义角色") with st.expander("➕ 添加新角色", expanded=False): new_agent_name = st.text_input("角色名称", placeholder="如:法务顾问", key="new_agent_name") new_agent_emoji = st.text_input("角色 Emoji", value="🎯", max_chars=2, key="new_agent_emoji") new_agent_perspective = st.text_input("视角定位", placeholder="如:法律合规视角", key="new_agent_perspective") new_agent_focus = st.text_input("关注点(逗号分隔)", placeholder="如:合规风险, 法律条款", key="new_agent_focus") new_agent_prompt = st.text_area("角色设定 Prompt", placeholder="描述这个角色的思考方式...", height=100, key="new_agent_prompt") if st.button("✅ 添加角色", use_container_width=True): if new_agent_name and new_agent_prompt: agent_id = f"custom_{len(st.session_state.custom_agents)}" st.session_state.custom_agents[agent_id] = { "name": new_agent_name, "emoji": new_agent_emoji, "perspective": new_agent_perspective or "自定义视角", "focus_areas": [f.strip() for f in new_agent_focus.split(",") if f.strip()], "system_prompt": new_agent_prompt } st.success(f"已添加角色: {new_agent_emoji} {new_agent_name}") st.rerun() else: st.warning("请至少填写角色名称和 Prompt") # 显示已添加的自定义角色 if st.session_state.custom_agents: st.markdown("**已添加的自定义角色:**") for agent_id, agent_info in list(st.session_state.custom_agents.items()): col1, col2 = st.columns([3, 1]) with col1: st.markdown(f"{agent_info['emoji']} {agent_info['name']}") with col2: if st.button("🗑️", key=f"del_{agent_id}"): del st.session_state.custom_agents[agent_id] st.rerun() # ==================== 主界面逻辑 ==================== if mode == "Deep Research": st.title("🧪 Multi-Model Council") st.markdown("*多模型智囊团:分析 (Expert A) -> 批判 (Expert B) -> 决策 (Expert C)*") # Input research_topic = st.text_area("研究/决策主题", placeholder="请输入你想深入研究或决策的主题...", height=100) research_context = st.text_area("补充背景 (可选)", placeholder="任何额外的背景信息...", height=80) start_research_btn = st.button("🚀 开始多模型协作", type="primary", disabled=not research_topic) if start_research_btn and research_topic: st.session_state.research_started = True st.session_state.research_output = "" st.session_state.research_steps_output = [] manager = ResearchManager(api_key=api_key) config_obj = ResearchConfig( topic=research_topic, context=research_context, expert_a_model=roles_config['expert_a'], expert_b_model=roles_config['expert_b'], expert_c_model=roles_config['expert_c'] ) manager.create_agents(config_obj) st.divider() st.subheader("🧠 智囊团思考中...") # Collaborative Execution current_step_name = "" current_step_content = "" step_placeholder = st.empty() status_container = st.status("正在初始化...", expanded=True) try: for event in manager.collaborate(research_topic, research_context): if event["type"] == "step_start": current_step_name = event["step"] current_agent = event["agent"] current_model = event["model"] status_container.update(label=f"🔄 {current_step_name} [{current_agent}] ({current_model})", state="running") step_placeholder = st.empty() current_step_content = "" elif event["type"] == "content": current_step_content += event["content"] step_placeholder.markdown(f"**Thinking...**\n\n{current_step_content}") elif event["type"] == "step_end": # Save step result st.session_state.research_steps_output.append({ "step": current_step_name, "output": event["output"] }) status_container.write(f"### {current_step_name}\n{event['output']}") status_container.update(label=f"✅ {current_step_name} 完成", state="running") status_container.update(label="✅ 所有步骤完成", state="complete", expanded=False) # The last step output is the final plan if st.session_state.research_steps_output: final_plan = st.session_state.research_steps_output[-1]["output"] st.session_state.research_output = final_plan st.success("✅ 综合方案生成完毕") except Exception as e: st.error(f"发生错误: {str(e)}") import traceback st.code(traceback.format_exc()) # Show Final Report if available if st.session_state.research_output: st.divider() st.subheader("📄 最终综合方案") st.markdown(st.session_state.research_output) st.download_button("📥 下载方案", st.session_state.research_output, "comprehensive_plan.md") # Show breakdown history with st.expander("查看完整思考过程"): for step in st.session_state.research_steps_output: st.markdown(f"### {step['step']}") st.markdown(step['output']) st.divider() elif mode == "Debate Workshop": # ==================== 原始 Debate UI 逻辑 ==================== st.title("🎭 多 Agent 决策工作坊") st.markdown("*让多个 AI 角色从不同视角辩论,帮助你做出更全面的决策*") # ==================== 输入区域 ==================== col1, col2 = st.columns([2, 1]) with col1: st.subheader("📝 决策议题") # 决策类型选择 decision_type = st.selectbox( "决策类型", options=list(DECISION_TYPES.keys()), format_func=lambda x: DECISION_TYPES[x], index=0 ) # 议题输入 topic = st.text_area( "请描述你的决策议题", placeholder="例如:我们是否应该在 Q2 推出 AI 助手功能?\n\n或者:我应该接受这份新工作 offer 吗?", height=120 ) # 背景信息(可选) with st.expander("➕ 添加背景信息(可选)"): context = st.text_area( "背景信息", placeholder="提供更多上下文信息,如:\n- 当前状况\n- 已有的资源和限制\n- 相关数据和事实", height=100 ) context = context if 'context' in dir() else "" with col2: st.subheader("🎭 选择参与角色") # 获取推荐的角色 recommended = get_recommended_agents(decision_type) all_agents = get_all_agents() # 预设角色选择 st.markdown("**预设角色:**") selected_agents = [] for agent in all_agents: is_recommended = agent["id"] in recommended default_checked = is_recommended if st.checkbox( f"{agent['emoji']} {agent['name']}", value=default_checked, key=f"agent_{agent['id']}" ): selected_agents.append(agent["id"]) # 自定义角色选择 if st.session_state.custom_agents: st.markdown("**自定义角色:**") for agent_id, agent_info in st.session_state.custom_agents.items(): if st.checkbox( f"{agent_info['emoji']} {agent_info['name']}", value=True, key=f"agent_{agent_id}" ): selected_agents.append(agent_id) # 自定义模型配置 (Advanced) agent_model_map = {} with st.expander("🛠️ 为每个角色指定模型 (可选)"): for agent_id in selected_agents: # Find agent name agent_name = next((a['name'] for a in all_agents if a['id'] == agent_id), agent_id) if agent_id in st.session_state.custom_agents: agent_name = st.session_state.custom_agents[agent_id]['name'] agent_model = st.selectbox( f"{agent_name} 的模型", options=list(AVAILABLE_MODELS.keys()), index=list(AVAILABLE_MODELS.keys()).index(model) if model in AVAILABLE_MODELS else 0, key=f"model_for_{agent_id}" ) agent_model_map[agent_id] = agent_model # 角色数量提示 if len(selected_agents) < 2: st.warning("请至少选择 2 个角色") elif len(selected_agents) > 6: st.warning("建议不超过 6 个角色") else: st.info(f"已选择 {len(selected_agents)} 个角色") # ==================== 辩论控制 ==================== st.divider() col_btn1, col_btn2, col_btn3 = st.columns([1, 1, 2]) with col_btn1: start_btn = st.button( "🚀 开始辩论", disabled=(not topic or len(selected_agents) < 2 or not api_key), type="primary", use_container_width=True ) with col_btn2: reset_btn = st.button( "🔄 重置", use_container_width=True ) if reset_btn: st.session_state.debate_started = False st.session_state.debate_finished = False st.session_state.speeches = [] st.session_state.report = "" st.rerun() # ==================== 辩论展示区 ==================== if start_btn and topic and len(selected_agents) >= 2: st.session_state.debate_started = True st.session_state.speeches = [] st.divider() st.subheader("🎬 辩论进行中...") # 临时将自定义角色添加到 agent_profiles from agents import agent_profiles original_profiles = dict(agent_profiles.AGENT_PROFILES) agent_profiles.AGENT_PROFILES.update(st.session_state.custom_agents) try: # 初始化默认客户端 llm_client = LLMClient( provider="aihubmix", api_key=api_key, base_url="https://aihubmix.com/v1", model=model ) # 初始化特定角色的客户端 agent_clients = {} for ag_id, ag_model in agent_model_map.items(): if ag_model != model: # Only create new client if different from default agent_clients[ag_id] = LLMClient( provider="aihubmix", api_key=api_key, base_url="https://aihubmix.com/v1", model=ag_model ) debate_manager = DebateManager(llm_client) # 配置辩论 debate_config = DebateConfig( topic=topic, context=context, agent_ids=selected_agents, max_rounds=max_rounds, agent_clients=agent_clients ) debate_manager.setup_debate(debate_config) # 运行辩论(流式) current_round = 0 speech_placeholder = None for event in debate_manager.run_debate_stream(): if event["type"] == "round_start": current_round = event["round"] st.markdown( f'
📢 第 {current_round} 轮讨论
', unsafe_allow_html=True ) elif event["type"] == "speech_start": # 显示模型名称 model_display = f" ({event.get('model_name', 'Unknown')})" st.markdown(f"**{event['emoji']} {event['agent_name']}**{model_display}", unsafe_allow_html=True) speech_placeholder = st.empty() current_content = "" elif event["type"] == "speech_chunk": current_content += event["chunk"] speech_placeholder.markdown(current_content) elif event["type"] == "speech_end": st.session_state.speeches.append({ "agent_id": event["agent_id"], "content": event["content"], "round": current_round }) st.divider() elif event["type"] == "debate_end": st.session_state.debate_finished = True st.success("✅ 辩论结束!正在生成决策报告...") # 生成报告 if st.session_state.debate_finished: report_generator = ReportGenerator(llm_client) speeches = debate_manager.get_all_speeches() st.subheader("📊 决策报告") report_placeholder = st.empty() report_content = "" for chunk in report_generator.generate_report_stream( topic=topic, speeches=speeches, context=context ): report_content += chunk report_placeholder.markdown(report_content) st.session_state.report = report_content # 下载按钮 st.download_button( label="📥 下载报告 (Markdown)", data=report_content, file_name="decision_report.md", mime="text/markdown" ) except Exception as e: st.error(f"发生错误: {str(e)}") import traceback st.code(traceback.format_exc()) st.info("请检查你的 API Key 和模型设置是否正确") finally: # 恢复原始角色配置 agent_profiles.AGENT_PROFILES = original_profiles # ==================== 历史报告展示 ==================== elif st.session_state.report and not start_btn: st.divider() st.subheader("📊 上次的决策报告") st.markdown(st.session_state.report) st.download_button( label="📥 下载报告 (Markdown)", data=st.session_state.report, file_name="decision_report.md", mime="text/markdown" ) # ==================== 底部信息 ==================== st.divider() col_footer1, col_footer2, col_footer3 = st.columns(3) with col_footer2: st.markdown( "
" "🎭 Multi-Agent Decision Workshop
多 Agent 决策工作坊" "
", unsafe_allow_html=True )