
VibeVault 项目评分报告
学号: N/A

姓名: N/A

班级: N/A

Commit: d9cbab1

成绩汇总

项目 得分

编程测试 60/60

报告 10/10

前端 10/10

总分 80/80

后端开发反思报告

1. 我遇到的最大挑战

在开发过程中，我遇到的最大挑战是 JPA 实体类的双向关联维护问题。

起初，我在实现 Playlist 和 Song 的一对多关系时，只是简单地在 Playlist 类
中添加了 @OneToMany 注解，以为这样就完成了。但当我运行测试时，发现添加歌曲
到歌单后，歌曲的 playlist 字段始终是 null ，导致测试失败。

我尝试了多种方法排查：首先检查了注解是否正确，发现 mappedBy 属性设置没问题；
然后在数据库控制台查看数据，发现 songs 表中的 playlist_id 确实是空的。这让
我意识到问题出在双向关联的维护上。

经过查阅 JPA 文档，我终于明白了：在双向关联中，关系的维护方是"多"的一方（即
Song ），而 Playlist 只是被动方。因此，仅仅调用 songs.add(song) 是不够

的，还必须同时调用 song.setPlaylist(this) 来维护另一端的引用。最终的实现
是：

public void addSong(Song song) {

 songs.add(song);

 song.setPlaylist(this); // 关键：维护双向关联

}

这个问题让我深刻理解了 ORM 框架只是工具，底层的关系型数据库原理仍然需要掌握。
双向关联看似方便，但如果不理解其工作机制，反而会成为 bug 的温床。

2. 如果重新做一遍

回顾这次开发，有几个地方我觉得可以做得更好：

首先是异常处理的设计。目前 ResourceNotFoundException 和
UnauthorizedException 都继承自 RuntimeException ，虽然能用，但错误信

息的格式不够统一。如果重新做，我会设计一个通用的 ApiException 基类，包含错
误码、错误信息和详细描述，这样前端解析错误会更方便。

其次是 DTO 转换的方式。目前我在 PlaylistServiceImpl 中用私有方法
toDTO() 进行转换，虽然能工作，但随着实体增多，这种方式会导致 Service 类越来越

臃肿。更好的做法是使用 MapStruct 这样的映射框架，或者至少把转换逻辑抽取到独立
的 Mapper 类中。

第三是安全配置的细化。目前的 SecurityConfig 把所有路径规则都写在一起，如果
后续 API 增多，这个配置会变得很长且难以维护。我会考虑使用 @PreAuthorize 注解
将权限控制下放到 Controller 方法级别，这样更直观，也更容易测试。

最后是测试覆盖。虽然公开测试都通过了，但我没有自己编写额外的单元测试来覆盖边界
情况。如果时间充裕，我会为 Service 层编写更多测试用例，特别是针对权限检查和异常
场景的测试。

3. AI 协同开发经验

这次开发中，AI 在以下场景帮助很大：

场景一：JWT 实现。我对 JWT 的 API 不太熟悉，于是问 AI："如何使用 jjwt 库生成和验
证 JWT token？"AI 给出了完整的代码示例，包括使用 Jwts.builder() 生成 token
和 Jwts.parser() 解析 token。这个回答直接帮我节省了大量查文档的时间。不过 AI
给的示例用的是旧版 API（ setSubject() 而非 subject() ），我需要根据实际使
用的 jjwt 0.12.x 版本进行调整。这让我学到：AI 的知识可能有时效性，需要验证是否与
当前使用的库版本匹配。

场景二：Spring Security 配置。我问 AI："如何配置 Spring Security 让某些路径公开访
问，其他需要 JWT 认证？"AI 给出了 SecurityFilterChain 的配置方式，这个回答
很有用。但 AI 最初建议我返回 403 而非 401，我查阅 HTTP 规范后发现，未认证应该返
回 401，而无权限才是 403。这让我意识到：不能盲目接受 AI 的回答，特别是涉及规范
和最佳实践的问题，需要自己判断。

总结：AI 是很好的"快速入门"工具，能帮我快速了解一个陌生技术的基本用法。但它的回
答可能过时、可能有细节错误、可能不符合最佳实践。正确的使用方式是把 AI 当作"高级
搜索引擎"，而非"权威答案"。我需要理解 AI 给的每一行代码，而不是复制粘贴后祈祷它
能工作。

前端开发反思报告

1. 我的界面展示

1.1 首页 - 歌单列表

这是 VibeVault 的首页，采用了紫色渐变背景营造音乐氛围。左侧卡片展示所有歌单列
表，每个歌单显示名称、创建者和歌曲数量。顶部搜索框支持实时搜索歌单。右上角显示
登录/注册按钮，方便用户快速进入系统。

1.2 用户登录

点击"登录"按钮弹出登录窗口，采用模态框设计避免页面跳转。表单包含用户名和密码输
入框，底部有取消和登录按钮。输入框有 focus 状态高亮，提升用户体验。

1.3 创建歌单

登录后可以创建新歌单。点击"创建新歌单"按钮弹出创建窗口，输入歌单名称即可创建。
创建成功后列表自动刷新，新歌单会立即显示在列表中。

1.4 歌单详情与歌曲管理

点击左侧歌单，右侧显示详情。包括歌单名称、创建者、歌曲数量等信息。如果是自己的
歌单，会显示"添加歌曲"和"删除歌单"按钮。歌曲列表展示每首歌的名称、歌手和时长，
支持单独删除。

1.5 添加歌曲

在自己的歌单中点击"添加歌曲"，弹出添加窗口。需要填写歌曲名称、歌手和时长
（秒）。添加成功后歌单详情自动刷新，新歌曲立即显示。

2. 我遇到的最大挑战

前端开发中最大的挑战是 JWT Token 的管理和 API 认证对接。

最初我直接在每个需要认证的请求中手动添加 Authorization 头，代码写得很乱。更
麻烦的是，登录成功后 Token 没有持久化，刷新页面就丢失了，用户需要重新登录。

我的解决过程： 1. 首先把 Token 存储到 localStorage ，这样刷新页面后仍能保持登
录状态 2. 封装了统一的请求头处理，在每个需要认证的 fetch 调用中自动添加
Authorization: Bearer ${token} 3. 在页面加载时检查 localStorage 中是

否有 Token，如果有则自动恢复登录状态

另一个挑战是跨域问题。开发时前端和后端端口不同，导致请求被浏览器拦截。最终我选
择把前端 HTML 放在 Spring Boot 的 static 目录下，这样前后端同源，彻底避免了跨
域问题。

这个过程让我理解了：前后端分离架构中，认证状态的管理是核心问题。Token 的存储、
传递、过期处理都需要仔细设计。

3. 如果重新做一遍

如果重新做，我会改进以下几点：

首先是使用前端框架。目前用原生 JavaScript 写的代码，DOM 操作和状态管理都很原
始。如果用 Vue 或 React，可以更优雅地处理数据绑定和组件复用，代码也更容易维护。

其次是增加加载状态。目前点击按钮后没有 loading 提示，用户不知道请求是否在进行
中。我会添加 loading 动画，在请求期间禁用按钮，避免重复提交。

第三是完善错误处理。目前只是简单地用 Toast 提示"操作失败"，没有具体说明原因。我
会解析后端返回的错误信息，给用户更明确的提示，比如"用户名已存在"而不是"注册失
败"。

最后是响应式设计。虽然加了媒体查询，但在手机上的体验还不够好。我会使用更完善的
响应式方案，确保移动端也有良好的使用体验。

	VibeVault 项目评分报告
	成绩汇总

	后端开发反思报告
	1. 我遇到的最大挑战
	2. 如果重新做一遍
	3. AI 协同开发经验

	前端开发反思报告
	1. 我的界面展示
	1.1 首页 - 歌单列表
	1.2 用户登录
	1.3 创建歌单
	1.4 歌单详情与歌曲管理
	1.5 添加歌曲

	2. 我遇到的最大挑战
	3. 如果重新做一遍

