text/src/streamlit_app.py

233 lines
8.9 KiB
Python
Raw Normal View History

import streamlit as st
import pandas as pd
import sys
import os
# 添加项目根目录到Python路径
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from src.agent import agent, get_agent
from src.data import load_data, preprocess_data, split_data
from src.models import train_model, save_model, load_model, compare_models
# 设置页面配置
st.set_page_config(
page_title="垃圾短信分类系统",
page_icon="📱",
layout="wide",
initial_sidebar_state="expanded"
)
# 应用标题
st.title("📱 垃圾短信分类系统")
st.markdown("---")
# 侧边栏
with st.sidebar:
st.header("系统配置")
# 模型选择
model_option = st.selectbox(
"选择模型",
options=["lightgbm", "logistic_regression"],
index=0,
help="选择用于分类的机器学习模型"
)
# 语言选择
lang_option = st.selectbox(
"输出语言",
options=["中文", "英文"],
index=0,
help="选择分类结果和解释的输出语言"
)
# 系统说明
st.markdown("---")
st.header("关于系统")
st.info(
"这是一个基于传统机器学习 + LLM + Agent的垃圾短信分类系统。\n"\
"- 使用LightGBM和Logistic Regression进行分类\n"\
"- 利用DeepSeek LLM解释分类结果\n"\
"- 通过Agent实现工具调用和结果整合"
)
# 主内容区域
col1, col2 = st.columns([1, 1], gap="large")
with col1:
# 短信输入
st.header("输入短信")
# 单条短信输入
sms_input = st.text_area(
"请输入要分类的短信",
height=200,
placeholder="例如WINNER!! As a valued network customer you have been selected to receivea £900 prize reward!"
)
# 分类按钮
classify_button = st.button(
"📊 开始分类",
type="primary",
use_container_width=True,
disabled=sms_input.strip() == ""
)
# 批量上传功能
st.markdown("---")
st.header("批量分类")
uploaded_file = st.file_uploader(
"上传CSV文件包含text列",
type=["csv"],
help="上传包含短信文本的CSV文件系统将自动分类"
)
# 模型训练功能(可选)
with st.expander("🔧 模型训练", expanded=False):
if st.button("重新训练模型"):
with st.spinner("正在训练模型..."):
try:
# 加载和预处理数据
df = load_data("../data/spam.csv")
processed_df = preprocess_data(df)
train_df, test_df = split_data(processed_df)
# 训练模型
model, params = train_model(train_df, model_type=model_option)
save_model(model, model_option)
st.success(f"{model_option} 模型训练完成!")
except Exception as e:
st.error(f"模型训练失败:{e}")
with col2:
# 分类结果显示
st.header("分类结果")
# 单条短信分类结果
if classify_button and sms_input.strip():
with st.spinner("正在分类..."):
try:
# 使用Agent进行分类和解释
result = agent.classify_and_explain(sms_input)
# 显示分类结果
st.subheader("📋 分类标签")
# 根据标签显示不同的样式
if result['classification']['label'] == "spam":
st.error(f"⚠️ 这是一条**垃圾短信**")
else:
st.success(f"✅ 这是一条**正常短信**")
# 显示概率
st.subheader("📊 分类概率")
prob_df = pd.DataFrame.from_dict(
result['classification']['probability'],
orient='index',
columns=['概率']
)
st.bar_chart(prob_df)
# 显示详细结果
st.subheader("📝 详细结果")
with st.expander("查看详细分类结果", expanded=True):
st.json(result['classification'], expanded=False)
# 显示解释和建议
st.subheader("🤔 结果解释")
with st.expander("查看分类解释", expanded=True):
st.write(f"**内容摘要**{result['explanation']['content_summary']}")
st.write(f"**分类原因**{result['explanation']['classification_reason']}")
st.write(f"**可信度**{result['explanation']['confidence_level']} - {result['explanation']['confidence_explanation']}")
st.subheader("💡 行动建议")
for i, suggestion in enumerate(result['explanation']['suggestions']):
st.write(f"{i+1}. {suggestion}")
except Exception as e:
st.error(f"分类失败:{e}")
# 批量分类结果
if uploaded_file is not None:
with st.spinner("正在批量分类..."):
try:
# 读取上传的文件
df = pd.read_csv(uploaded_file)
if "text" not in df.columns:
st.error("CSV文件必须包含'text'")
else:
# 限制处理数量
max_rows = 100
if len(df) > max_rows:
st.warning(f"文件包含 {len(df)} 条记录,仅处理前 {max_rows}")
df = df.head(max_rows)
# 批量分类
results = []
for text in df["text"].tolist():
result = agent.classify_and_explain(text)
results.append({
"text": text,
"label": result['classification']['label'],
"spam_probability": result['classification']['probability']['spam'],
"ham_probability": result['classification']['probability']['ham'],
"content_summary": result['explanation']['content_summary'],
"classification_reason": result['explanation']['classification_reason']
})
# 转换为DataFrame
results_df = pd.DataFrame(results)
# 显示结果统计
st.subheader("📊 分类统计")
label_counts = results_df["label"].value_counts()
st.bar_chart(label_counts)
# 显示结果表格
st.subheader("📋 分类结果")
st.dataframe(
results_df,
use_container_width=True,
column_config={
"text": st.column_config.TextColumn("短信内容", width="medium"),
"label": st.column_config.TextColumn("分类标签"),
"spam_probability": st.column_config.ProgressColumn(
"垃圾短信概率",
format="%.2f",
min_value=0.0,
max_value=1.0
),
"ham_probability": st.column_config.ProgressColumn(
"正常短信概率",
format="%.2f",
min_value=0.0,
max_value=1.0
),
"content_summary": st.column_config.TextColumn("内容摘要", width="medium"),
"classification_reason": st.column_config.TextColumn("分类原因", width="medium")
}
)
# 下载结果
st.subheader("💾 下载结果")
csv = results_df.to_csv(index=False).encode('utf-8')
st.download_button(
label="下载分类结果 (CSV)",
data=csv,
file_name="spam_classification_results.csv",
mime="text/csv",
use_container_width=True
)
except Exception as e:
st.error(f"批量分类失败:{e}")
# 页脚
st.markdown("---")
st.markdown(
"<center>© 2026 垃圾短信分类系统 | 基于传统机器学习 + LLM + Agent</center>",
unsafe_allow_html=True
)