删除 src/tweet_agent.py

This commit is contained in:
张则文 2026-01-15 17:42:34 +08:00
parent 35a84b9ce1
commit 5c519dda05

View File

@ -1,345 +0,0 @@
"""推文情感分析 Agent 模块
实现分类 解释 生成处置方案流程输出结构化结果
"""
from pathlib import Path
from typing import Optional
import numpy as np
import polars as pl
from pydantic import BaseModel, Field
from src.tweet_data import load_cleaned_tweets
from src.train_tweet_ultimate import load_model as load_ultimate_model
class SentimentClassification(BaseModel):
"""情感分类结果"""
sentiment: str = Field(description="情感类别: negative/neutral/positive")
confidence: float = Field(description="置信度 (0-1)")
class SentimentExplanation(BaseModel):
"""情感解释"""
key_factors: list[str] = Field(description="影响情感判断的关键因素")
reasoning: str = Field(description="情感判断的推理过程")
class DisposalPlan(BaseModel):
"""处置方案"""
priority: str = Field(description="处理优先级: high/medium/low")
action_type: str = Field(description="行动类型: response/investigate/monitor/ignore")
suggested_response: Optional[str] = Field(description="建议回复内容(如适用)", default=None)
follow_up_actions: list[str] = Field(description="后续行动建议")
class TweetAnalysisResult(BaseModel):
"""推文分析结果(结构化输出)"""
tweet_text: str = Field(description="原始推文文本")
airline: str = Field(description="航空公司")
classification: SentimentClassification = Field(description="情感分类结果")
explanation: SentimentExplanation = Field(description="情感解释")
disposal_plan: DisposalPlan = Field(description="处置方案")
class TweetSentimentAgent:
"""推文情感分析 Agent
实现分类 解释 生成处置方案流程
"""
def __init__(self, model_path: Optional[Path] = None):
"""初始化 Agent
Args:
model_path: 模型路径可选
"""
self.model = load_ultimate_model()
self.label_encoder = self.model.label_encoder
self.tfidf_vectorizer = self.model.tfidf_vectorizer
self.airline_encoder = self.model.airline_encoder
def classify(self, text: str, airline: str) -> SentimentClassification:
"""分类:对推文进行情感分类
Args:
text: 推文文本
airline: 航空公司
Returns:
情感分类结果
"""
# 预测
sentiment = self.model.predict(np.array([text]), np.array([airline]))[0]
# 预测概率
proba = self.model.predict_proba(np.array([text]), np.array([airline]))[0]
# 获取预测类别的置信度
sentiment_idx = self.label_encoder.transform([sentiment])[0]
confidence = float(proba[sentiment_idx])
return SentimentClassification(
sentiment=sentiment,
confidence=confidence,
)
def explain(self, text: str, airline: str, classification: SentimentClassification) -> SentimentExplanation:
"""解释:生成情感判断的解释
Args:
text: 推文文本
airline: 航空公司
classification: 情感分类结果
Returns:
情感解释
"""
key_factors = []
reasoning_parts = []
text_lower = text.lower()
# 分析情感关键词
negative_words = ["bad", "terrible", "awful", "worst", "hate", "angry", "disappointed", "frustrated", "cancelled", "delayed", "lost", "rude"]
positive_words = ["good", "great", "excellent", "best", "love", "happy", "satisfied", "amazing", "wonderful", "thank", "helpful"]
neutral_words = ["question", "how", "what", "when", "where", "why", "please", "help", "info", "information"]
found_negative = [word for word in negative_words if word in text_lower]
found_positive = [word for word in positive_words if word in text_lower]
found_neutral = [word for word in neutral_words if word in text_lower]
if found_negative:
key_factors.append(f"包含负面词汇: {', '.join(found_negative[:3])}")
reasoning_parts.append("文本中包含多个负面情感词汇,表达不满情绪")
if found_positive:
key_factors.append(f"包含正面词汇: {', '.join(found_positive[:3])}")
reasoning_parts.append("文本中包含正面情感词汇,表达满意或感谢")
if found_neutral:
key_factors.append(f"包含中性词汇: {', '.join(found_neutral[:3])}")
reasoning_parts.append("文本主要包含询问或请求,情绪相对中性")
# 分析文本特征
if "!" in text:
key_factors.append("包含感叹号")
reasoning_parts.append("感叹号的使用表明情绪较为强烈")
if "?" in text:
key_factors.append("包含问号")
reasoning_parts.append("问号的使用表明存在疑问或询问")
if "@" in text:
key_factors.append("包含@提及")
reasoning_parts.append("直接@航空公司表明希望获得关注或回复")
# 分析航空公司
key_factors.append(f"涉及航空公司: {airline}")
# 生成推理过程
if not reasoning_parts:
reasoning_parts.append("根据文本整体语义和情感特征进行判断")
reasoning = "".join(reasoning_parts) + ""
return SentimentExplanation(
key_factors=key_factors,
reasoning=reasoning,
)
def generate_disposal_plan(
self,
text: str,
airline: str,
classification: SentimentClassification,
explanation: SentimentExplanation,
) -> DisposalPlan:
"""生成处置方案
Args:
text: 推文文本
airline: 航空公司
classification: 情感分类结果
explanation: 情感解释
Returns:
处置方案
"""
sentiment = classification.sentiment
confidence = classification.confidence
# 根据情感和置信度确定优先级和行动类型
if sentiment == "negative":
if confidence >= 0.8:
priority = "high"
action_type = "response"
suggested_response = self._generate_negative_response(text, airline)
follow_up_actions = [
"记录客户投诉详情",
"转交相关部门处理",
"跟进处理进度",
"在24小时内给予反馈",
]
else:
priority = "medium"
action_type = "investigate"
suggested_response = None
follow_up_actions = [
"进一步核实情况",
"根据核实结果决定是否需要回复",
]
elif sentiment == "positive":
if confidence >= 0.8:
priority = "low"
action_type = "response"
suggested_response = self._generate_positive_response(text, airline)
follow_up_actions = [
"感谢客户反馈",
"分享正面评价至内部团队",
"考虑在官方渠道展示",
]
else:
priority = "low"
action_type = "monitor"
suggested_response = None
follow_up_actions = [
"持续关注该用户后续动态",
]
else: # neutral
if "?" in text or "help" in text.lower():
priority = "medium"
action_type = "response"
suggested_response = self._generate_neutral_response(text, airline)
follow_up_actions = [
"提供准确信息",
"确保客户问题得到解答",
]
else:
priority = "low"
action_type = "monitor"
suggested_response = None
follow_up_actions = [
"持续关注",
]
return DisposalPlan(
priority=priority,
action_type=action_type,
suggested_response=suggested_response,
follow_up_actions=follow_up_actions,
)
def _generate_negative_response(self, text: str, airline: str) -> str:
"""生成负面情感回复"""
responses = [
f"感谢您的反馈。我们非常重视您提到的问题,将立即进行调查并尽快给您答复。",
f"对于您的不愉快体验,我们深表歉意。请私信我们详细情况,我们将全力为您解决。",
f"收到您的反馈,我们对此感到抱歉。相关部门已介入,将尽快处理并给您满意的答复。",
]
return responses[hash(text) % len(responses)]
def _generate_positive_response(self, text: str, airline: str) -> str:
"""生成正面情感回复"""
responses = [
f"感谢您的认可和支持!我们会继续努力为您提供更好的服务。",
f"很高兴听到您的正面反馈!您的满意是我们前进的动力。",
f"感谢您的分享!我们会将您的反馈传达给团队,激励我们做得更好。",
]
return responses[hash(text) % len(responses)]
def _generate_neutral_response(self, text: str, airline: str) -> str:
"""生成中性情感回复"""
responses = [
f"感谢您的询问。请问您需要了解哪方面的信息?我们将竭诚为您解答。",
f"收到您的问题。请提供更多细节,以便我们更好地为您提供帮助。",
]
return responses[hash(text) % len(responses)]
def analyze(self, text: str, airline: str) -> TweetAnalysisResult:
"""完整分析流程:分类 → 解释 → 生成处置方案
Args:
text: 推文文本
airline: 航空公司
Returns:
完整分析结果
"""
# 1. 分类
classification = self.classify(text, airline)
# 2. 解释
explanation = self.explain(text, airline, classification)
# 3. 生成处置方案
disposal_plan = self.generate_disposal_plan(text, airline, classification, explanation)
# 返回结构化结果
return TweetAnalysisResult(
tweet_text=text,
airline=airline,
classification=classification,
explanation=explanation,
disposal_plan=disposal_plan,
)
def analyze_tweet(text: str, airline: str) -> TweetAnalysisResult:
"""分析单条推文
Args:
text: 推文文本
airline: 航空公司
Returns:
分析结果
"""
agent = TweetSentimentAgent()
return agent.analyze(text, airline)
def analyze_tweets_batch(texts: list[str], airlines: list[str]) -> list[TweetAnalysisResult]:
"""批量分析推文
Args:
texts: 推文文本列表
airlines: 航空公司列表
Returns:
分析结果列表
"""
agent = TweetSentimentAgent()
results = []
for text, airline in zip(texts, airlines):
result = agent.analyze(text, airline)
results.append(result)
return results
if __name__ == "__main__":
# 示例:分析单条推文
print(">>> 示例 1: 负面情感")
result = analyze_tweet(
text="@United This is the worst airline ever! My flight was delayed for 5 hours and no one helped!",
airline="United",
)
print(result.model_dump_json(indent=2))
print("\n>>> 示例 2: 正面情感")
result = analyze_tweet(
text="@Southwest Thank you for the amazing flight! The crew was so helpful and friendly.",
airline="Southwest",
)
print(result.model_dump_json(indent=2))
print("\n>>> 示例 3: 中性情感")
result = analyze_tweet(
text="@American What is the baggage policy for international flights?",
airline="American",
)
print(result.model_dump_json(indent=2))