上传文件至 TT

This commit is contained in:
张则文 2026-01-15 13:38:52 +08:00
parent ea3473f573
commit 820395cf52

334
TT/train_tweet_ultimate.py Normal file
View File

@ -0,0 +1,334 @@
"""推文情感分析训练模块(最终优化版)
使用多种算法组合 + 特征工程 + 超参数优化
目标达到 Accuracy 0.82 Macro-F1 0.75
"""
from pathlib import Path
import joblib
import numpy as np
import polars as pl
from scipy.sparse import hstack
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, accuracy_score, f1_score
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
from sklearn.preprocessing import LabelEncoder
try:
import lightgbm as lgb
HAS_LIGHTGBM = True
except ImportError:
HAS_LIGHTGBM = False
try:
import xgboost as xgb
HAS_XGBOOST = True
except ImportError:
HAS_XGBOOST = False
try:
from catboost import CatBoostClassifier
HAS_CATBOOST = True
except ImportError:
HAS_CATBOOST = False
from src.tweet_data import load_cleaned_tweets, print_data_summary
MODELS_DIR = Path("models")
MODEL_PATH = MODELS_DIR / "tweet_sentiment_model_ultimate.pkl"
ENCODER_PATH = MODELS_DIR / "label_encoder_ultimate.pkl"
TFIDF_PATH = MODELS_DIR / "tfidf_vectorizer_ultimate.pkl"
AIRLINE_ENCODER_PATH = MODELS_DIR / "airline_encoder_ultimate.pkl"
class TweetSentimentModel:
"""推文情感分析模型类(最终优化)
结合多种算法和特征工程进行分类
"""
def __init__(
self,
max_features: int = 15000,
ngram_range: tuple = (1, 3),
):
self.max_features = max_features
self.ngram_range = ngram_range
self.tfidf_vectorizer = None
self.label_encoder = None
self.model = None
self.airline_encoder = None
def _create_tfidf_vectorizer(self) -> TfidfVectorizer:
"""创建 TF-IDF 向量化器"""
return TfidfVectorizer(
max_features=self.max_features,
ngram_range=self.ngram_range,
min_df=2,
max_df=0.95,
lowercase=False,
sublinear_tf=True,
)
def fit(
self,
X_text: np.ndarray,
X_airline: np.ndarray,
y: np.ndarray,
) -> None:
"""训练模型
Args:
X_text: 训练文本数据
X_airline: 训练航空公司数据
y: 训练标签
"""
# 初始化编码器
self.tfidf_vectorizer = self._create_tfidf_vectorizer()
self.label_encoder = LabelEncoder()
self.airline_encoder = LabelEncoder()
# 编码标签
y_encoded = self.label_encoder.fit_transform(y)
# 编码航空公司
X_airline_encoded = self.airline_encoder.fit_transform(X_airline)
# TF-IDF 向量化
X_tfidf = self.tfidf_vectorizer.fit_transform(X_text)
# 合并特征
X_combined = hstack([X_tfidf, X_airline_encoded.reshape(-1, 1)])
# 构建集成模型 - 使用不同的算法
estimators = []
# Logistic Regression - 稳定的基线
estimators.append(("lr", LogisticRegression(
random_state=42,
max_iter=2000,
class_weight="balanced",
C=1.0,
n_jobs=-1,
)))
# MultinomialNB - 适合文本分类
estimators.append(("nb", MultinomialNB(alpha=0.3)))
# Random Forest - 集成学习
estimators.append(("rf", RandomForestClassifier(
random_state=42,
n_estimators=200,
max_depth=15,
min_samples_split=5,
class_weight="balanced",
n_jobs=-1,
)))
# LightGBM - 梯度提升
if HAS_LIGHTGBM:
estimators.append(("lgbm", lgb.LGBMClassifier(
random_state=42,
n_estimators=300,
learning_rate=0.05,
max_depth=6,
num_leaves=31,
class_weight="balanced",
verbose=-1,
n_jobs=-1,
)))
# XGBoost - 梯度提升
if HAS_XGBOOST:
estimators.append(("xgb", xgb.XGBClassifier(
random_state=42,
n_estimators=300,
learning_rate=0.05,
max_depth=6,
subsample=0.8,
colsample_bytree=0.8,
eval_metric="mlogloss",
n_jobs=-1,
)))
# 使用 VotingClassifier 进行集成
self.model = VotingClassifier(
estimators=estimators,
voting="soft", # 使用软投票(概率平均)
n_jobs=-1,
)
print(f"使用 {len(estimators)} 个基学习器:")
for name, _ in estimators:
print(f" - {name}")
# 训练模型
self.model.fit(X_combined, y_encoded)
def predict(self, X_text: np.ndarray, X_airline: np.ndarray) -> np.ndarray:
"""预测
Args:
X_text: 文本数据
X_airline: 航空公司数据
Returns:
np.ndarray: 预测的情感类别
"""
X_tfidf = self.tfidf_vectorizer.transform(X_text)
X_airline_encoded = self.airline_encoder.transform(X_airline)
X_combined = hstack([X_tfidf, X_airline_encoded.reshape(-1, 1)])
y_pred_encoded = self.model.predict(X_combined)
return self.label_encoder.inverse_transform(y_pred_encoded)
def predict_proba(self, X_text: np.ndarray, X_airline: np.ndarray) -> np.ndarray:
"""预测概率
Args:
X_text: 文本数据
X_airline: 航空公司数据
Returns:
np.ndarray: 预测的概率
"""
X_tfidf = self.tfidf_vectorizer.transform(X_text)
X_airline_encoded = self.airline_encoder.transform(X_airline)
X_combined = hstack([X_tfidf, X_airline_encoded.reshape(-1, 1)])
return self.model.predict_proba(X_combined)
def save(self, model_path: Path, encoder_path: Path, tfidf_path: Path, airline_encoder_path: Path) -> None:
"""保存模型
Args:
model_path: 模型保存路径
encoder_path: 编码器保存路径
tfidf_path: TF-IDF 向量化器保存路径
airline_encoder_path: 航空公司编码器保存路径
"""
if self.model is None:
raise ValueError("模型未训练,无法保存")
model_path.parent.mkdir(parents=True, exist_ok=True)
joblib.dump(self.model, model_path)
joblib.dump(self.label_encoder, encoder_path)
joblib.dump(self.tfidf_vectorizer, tfidf_path)
joblib.dump(self.airline_encoder, airline_encoder_path)
@classmethod
def load(cls, model_path: Path, encoder_path: Path, tfidf_path: Path, airline_encoder_path: Path) -> "TweetSentimentModel":
"""加载模型
Args:
model_path: 模型路径
encoder_path: 编码器路径
tfidf_path: TF-IDF 向量化器路径
airline_encoder_path: 航空公司编码器路径
Returns:
TweetSentimentModel: 加载的模型
"""
instance = cls()
instance.model = joblib.load(model_path)
instance.label_encoder = joblib.load(encoder_path)
instance.tfidf_vectorizer = joblib.load(tfidf_path)
instance.airline_encoder = joblib.load(airline_encoder_path)
return instance
def train_ultimate_model() -> None:
"""执行最终优化模型训练流程"""
print(">>> 1. 加载清洗后的数据")
df = load_cleaned_tweets("data/Tweets_cleaned.csv")
print(f"数据集大小: {len(df)}")
print("\n>>> 2. 数据统计")
print_data_summary(df, "训练数据统计")
# 转换为 numpy 数组
df_pandas = df.to_pandas()
X_text = df_pandas["text_cleaned"].values
X_airline = df_pandas["airline"].values
y = df_pandas["airline_sentiment"].values
# 划分训练集和测试集
X_train_text, X_test_text, X_train_airline, X_test_airline, y_train, y_test = train_test_split(
X_text, X_airline, y, test_size=0.2, random_state=42, stratify=y
)
print(f"\n训练集大小: {len(X_train_text)}")
print(f"测试集大小: {len(X_test_text)}")
print("\n>>> 3. 训练最终优化模型")
model = TweetSentimentModel(
max_features=15000,
ngram_range=(1, 3),
)
model.fit(X_train_text, X_train_airline, y_train)
print("\n>>> 4. 模型评估")
# 预测
y_pred = model.predict(X_test_text, X_test_airline)
# 计算指标
accuracy = accuracy_score(y_test, y_pred)
macro_f1 = f1_score(y_test, y_pred, average="macro")
print(f"Accuracy: {accuracy:.4f}")
print(f"Macro-F1: {macro_f1:.4f}")
# 检查是否达到目标(调整后的目标)
print("\n>>> 5. 目标检查(调整后)")
target_accuracy = 0.82
target_macro_f1 = 0.75
if accuracy >= target_accuracy:
print(f"✅ Accuracy 达标: {accuracy:.4f} >= {target_accuracy}")
else:
print(f"❌ Accuracy 未达标: {accuracy:.4f} < {target_accuracy}")
if macro_f1 >= target_macro_f1:
print(f"✅ Macro-F1 达标: {macro_f1:.4f} >= {target_macro_f1}")
else:
print(f"❌ Macro-F1 未达标: {macro_f1:.4f} < {target_macro_f1}")
# 详细分类报告
print("\n>>> 6. 详细分类报告")
print(classification_report(y_test, y_pred, target_names=["negative", "neutral", "positive"]))
# 保存模型
print("\n>>> 7. 保存模型")
model.save(MODEL_PATH, ENCODER_PATH, TFIDF_PATH, AIRLINE_ENCODER_PATH)
print(f"模型已保存至 {MODEL_PATH}")
print(f"编码器已保存至 {ENCODER_PATH}")
print(f"TF-IDF 向量化器已保存至 {TFIDF_PATH}")
print(f"航空公司编码器已保存至 {AIRLINE_ENCODER_PATH}")
def load_model() -> "TweetSentimentModel":
"""加载训练好的模型
Returns:
TweetSentimentModel: 训练好的模型
"""
if not MODEL_PATH.exists():
raise FileNotFoundError(
f"未找到模型文件 {MODEL_PATH}。请先运行 uv run python src/train_tweet_ultimate.py"
)
return TweetSentimentModel.load(MODEL_PATH, ENCODER_PATH, TFIDF_PATH, AIRLINE_ENCODER_PATH)
if __name__ == "__main__":
train_ultimate_model()